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Introduction

The need to pursue questions of causality and causal inference with

nonexperimental data - that is, data based on naturally occurring events -

has been recognized for some time in disciplines such as biometrics,

econometrics, and sociology (cf. Blalock, 1971; Duncan, 1975; Goldberger &

Duncan, 1973; Heise, 1975; Johnston, 1972; Jdreskog, 1970; Namboodiri, Carter,

& Blalock, 1975; Wright, 1934, 1960). More importantly, a family of empirical

procedures designed to evaluate the utility of causal hypotheses and to

support inferences regarding causality among naturally occurring events is

gaining rapid exposure in psychology (cf. Bentler, 1980; Bentler & Bonett,

1980; Bentler & Weeks, 1980; Cook & Campbell, 1979; James & Singh, 1978;

J6reskog, 1978; J6reskog & Sbrbom, 1979; Kenny, 1979; Maruyama & McGarvey,

1980; Werts & Linn, 1970). The term "confirmatory analysis" is used here to

refer to this family of procedures, which includes confirmatory factor

analysis, linear structural relations, path analysis, structural equations,

and time series. The term "confirmatory" denotes that these procedures are

designed to evaluate the utility of causal hypotheses by testing the fit

between a theoretical model and empirical data. If a theoretical model is

shown to have a "good fit" with the data, then the model is regarded as

confirmed. Conversely, a theoretical model is disconfirmed if it has a "poor

fit" with the data.

Confirmatory analysis is likely to assume an important place in the

repertoire of psychological research methods. Bentler (1980, p. 420), for

example, described linear structural equation models with latent (i.e.,

unmeasured) variables as having "...the greatest promise for furthering

~[
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psychological science." Another example is provided by the current editor of

Psychometrika (Cliff, 1980) who stated, "The development of the rigorous and

generalized methods for testing hypotheses concerning underlying structures in

covariance matrices is perhaps the most important and influential statistical

revolution to have occurred in the social sciences." However, there have also

been words of caution about the strong emphasis in the literature on the

statistical methods of confirmatory analysis and the comparatively weak

emphasis on the assumptions that justify the use of these methods. Tb

illustrate, Cliff (1980) went on to say that while the methods may be "...a

great boon to social science research, ... there is some danger that they may

instead have been a disaster, a disaster because they seem to encourage us to

suspend our normal critical faculties." Billings and Wroten (1978) and James

(1980) were less equivocal, noting that failure to pay attention to potential

unmeasured causes in path analytic models has resulted in biased estimates of

path coefficients and erroneous causal inferences.

There is a serious need to specify the conditions that justify the

application of confirmatory analysis and the use of the results of

confirmatory analysis to support causal inference. Our objective is to

specify and to discuss these conditions. To meet this objective, we will show

how these conditions follow from a number of fundamental philosophical

assumptions about the nature of causality and about how causes may be known.

We will begin our discussion in Section I with an overview of the

philosophical issues surrounding the idea of causation. This section is

designed to help the reader who is not familiar with these issues see how

philosophical questions about causation must be settled before one proceeds to

develop a methodolgy for dealing with causation in the behavioral and social
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sciences. In this discussion we will state where we stand philosophically on

these issues, recognizing that the topic of causality is still one of the most

controversial in the philosophy of science. We will also introduce an

interpretation of causality that we feel corresponds to the intuitive use of

the concept by scientists (Simon, 1977), and then use this interpretation to

establish a rationale for testing the utility of causal hypotheses by

confirmatory analysis.

The rationale for testing the utility of causal hypotheses by

confirmatory analysis will be developed in greater detail in Section 2 by

overviewing ten conditions which, if reasonably satisfied, justify

confirmatory analysis. The role of confirmatory analysis in causal inference

will be addressed in Section 3, where we will discuss the advantages and

disadvantages of confirmatory analysis in the context of the equivocality of

causal inference. Finally, Section 4 will be devoted to an overview of latent

variable models, which are models designed to evaluate the utility of causal

hypotheses among theoretical constructs. As discussed in greater detail

later, "latent variables" are abstractions or theoretical constructs that are

not amenable to direct measurement (e.g., common factors).

The presentation is relatively nontechnical inasmuch as our goal is to

discuss logic and assumptions. Nevertheless, confirmatory analysis cannot be

addressed independently of methodology. Those desiring more comprehensive

treatments of methods are referred to the references cited throughout the

paper. Finally, although this presentation of confirmatory analysis is

limited to causal inference with naturally occurring events, we also affirm

that the logic and procedures extend to experimental data (cf. Kenny, 1979;

Miller, 1971).
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1. AN INTERPRETATION OF CAUSALITY

Causality is a complex topic, beset by controversy because of

metaphysical and epistemological differences among philosophers of

science. Nevertheless, we believe that an understanding of causality is

helpful for understanding the conditions that justify confirmatory

analysis and the use of the results of confirmatory analysis to support

causal inference. It is not our aim to explore exhaustively the theories

by which we come to know things or to delve deeply into the metaphysical

aspects of causation, however important these may be to a full

understanding of causality. Rather, we wish to develop an understanding

of causality that is compatible with the methodological treatment of

causality in scientific inquiry.

Causality and Necessary Connection

Mhen we seek to understand an event or an object, what we often went

to know is what caused or determined it. Thus, at first view, causality

seems to involve establishing a necessary connection in the form of an

event A being necessary for the occurrence of an event B. But we

shall argue that causal relations are not necessary relations. Further,

our acceptance of a causal relation must be tentative, because there is no

logical guarantee that the relation will be supported by further

exper ience.

The perspective that causal relations are necessary relations is

exemplified by the philosophical realist who believes in the independent

existence of a world beyond the senses. Causation, for the philosophical

realist, concerns the manner in which objects are able to effect change in
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other objects by means of various forces and powers. The realist wishes

to discover these forces and to show why objects necessarily produce the

effects that they do. This is not, however, a sufficient account of

causation for the psychologically minded who wonder how it is that we know

about the world and the causes that objects in the world exert on other

objects. Hbw do external objects cause humans to perceive not just the

objects, but the causal forces they exert on one another? From what

information does the human organism construct internal representations of

external objects and causal forces?

We know that information about the world comes to the senses in the

form of physical energy. Furthermore, information about causes appears to

reside in the temporal sequence of stimulus information. For example,

people report that they perceive events causing other events as they watch

a film. But all the information presented in the film is varying

intensities of light and shadow, arranged spatially in images that are

presented rapidly in a sequence. People do not report that they perceive

events causing other events when the film's image frames are presented in

random order. The perception of causation depends on the order in which

the information is presented and cannot be found in the individual

elements of information.

The British empiricists of the 18th and 19th centuries, reflecting on

the problem of causation, reached a similar conclusion. David Hume

(1977/1748) argued that the only thing he could find in experience to

account for the idea of a causal connection between phenomenal events was

an awareness of the repetition of similar instances in which an object of

one kind is invariably followed by an object of another kind. Nothing
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within the objects themselves connect them. Only the repeated pairing of

objects gives rise to the idea of a causal relation between objects.

"This connexion," Hume wrote, "which we feel in the mind, this customary

transition of the imagination from one object to its usual attendant, is

the sentiment or impression from which we form the idea of power or

necessary connexion. Nothing farther is in the case" (Hume, 1977/1948, p.

50).

event A being necessary for the occurrence of an event B, because logical

necessity would allow for neither exceptions nor contradictions, such as

the occurrence of an event B without the occurrence of an event A. He

argued that in considering connections between objects, it is possible

that in the future we will experience the connection between objects

differently than we have in the past. For a considerable time after Hume,

empiricism discounted any role for logical necessity in considerations of

matters of fact. The empiricists' rejection of logical necessity led them

to avoid deduction from general theories and to stress induction and

description.

Modern empiricism, however, restored logic to respectability in

science when it came to explanation using hypothetical formal models

designed to represent relations between objects of experience. Logic

entered in when one deduced the occurrence of specific events from general

laws established inductively in prior experience. 7b illustrate, Hemhill

and Oppenhelm (1948) offered the following schema for the process of

explanation: Let E be an event to be explained, described in

observational terms. Let C1, C2, ... , !k be a set of antecedent
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conditions. Let Li, L2, ... , L be general laws. Then, if from

the inductively generated antecedent conditions and the general laws one

is able to deduce the event E to be explained, these antecedent

conditions are the explanation of E. The "logical necessity" that

connects the antecedent conditions and general laws is not absolute for

these empiricists. Rather, this "logical necessity" is relative to the

hypothetical logical system in which one assumes that the antecedent

conditions and general laws are valid premises. Furthermore, there can be

no absolute necessity for such logically deduced explanations to be always

correct, for further experience may show the premises on which they are

based to be false.

In general, inductively based theories and explanations-that is,

generalizations from the past to the present or future--cannot escape the

tentativeness of inductive inferences. As Hume observed, there are no

logically necessary connections in experience. Whether the necessary

connections of causal relations are established by repeatedly observing

invariant successions of an event A followed by an event B, or are

deduced logically from inductively established premises, it is not

necessary that one will continue to observe such regular successions or to

find the empirically induced premises of a deductive argument to be true.

Hume even came to question whether the process of induction, of

generalizing from the past to the present or the future, was rationally

justifiable. This was particularly disturbing to him because he saw that

people used inductive reasoning all the time in their everyday affairs. But

he could conceive of no rational argument that could stand up to the logical

possibility that events could turn out to be quite different from what was
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inductively expected. Numerous philosophers after Hume have similarly been

unable to find rational arguments to justify the use of induction.

Nevertheless, some philosophers seem willing to live with the

unjustifiability of expectations based on past experience. Feigl (1963)

regarded the idea that past experience is a guide to what will happen in

the present and the future as an essential but rationally unjustifiable

premise that one had to make to deal rationally with experience. Cook and

Campbell (1979) regarded inductive, cause-inferring behavior as

characteristic behavior of our species and suggested that such behavior

evolved because it had survival value. Other philosophers have not been

so kind in dealing with Hume's skepticism. Wittgenstein regarded Hume's

skepticism about induction as "unintelligible", on a par with asking

someone to justify breathing or walking (cf. Dilman, 1973). Capaldi

(1969) detected a subtle circularity in Hume's skeptical argument, namely

that Hume must rely on instances in past experience of unfulfilled

expectations to support his argument that past experience cannot be relied

upon always to fulfill our expectations. But if past experience cannot be

relied upon, how can Hume rely upon it to prove that it cannot be relied

upon? Thus he presumed the very thing he sought to undermine.

In sum, causal relations are not necessary relations. Mile a causal

relation may be deduced logically from prior theoretical assumptions or based

inductively on an observation of a regularity in experience, there is no

logical guarantee that the relation will occur similarly in future experience.

Ths, our use of causal relations must be tentative. Furthermore, if we do

use causal relations as explanations or as guides for action, we do so without

any rational justification for why this practice occurs. It is basically a
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fundamental human practice.

The Form of a Causal Relation

Some philosophers conceptualize causal relations as following the form

of logical implication. These forms are reviewed briefly below. We will

then argue that causal relations need not, and perhaps should not, be con-

ceptualized as following the form of logical implication. Rather, we will

argue that causal relations follow the form of an asymetric functional

relation in a self-contained system.

In regard to logical implication, causal relations have often been

viewed as taking one of the following three interrelated forms (Byerly,

1973): (1) Sufficient condition: An event A is causally sufficient

for an effect B if B occurs whenever A occurs. (2) Necessary

condition: An event A is causally necessary for an effect B if B

never occurs without A having already occurred. (3) Necessary and

Sufficient condition: An event A is a necessary and sufficient

condition for an effect B if B never occurs when A has not occurred

and B always occurs when A has occurred.

Treating causation as having one of the forms of logical implication

leads to conclusions which are incompatible with the common language

conceptions of causation. For example, the statement, "If A, then B"

logically implies "If not B, then not A." But, if the causal relation

follows the form of logical implication, this would mean "A causes B"

implies "not B causes not A", which makes no sense. To use a concrete

example, if the causal relation follows the form of logical implication,

then the statement, "John's pressing the accelerator pedal causes the car

to accelerate" implies "The car's not accelerating causes John not to
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press the accelerator pedal." Not only does this sound absurd, but also

t it points out the need for an approach to causality that "corresponds to

the intuitive use of that term in scientific discussion" (Simon, 1977, p.

77).

Simon (1952, 1953, 1966, 1977) argued that, formally speaking, the

form of the causal relation does not take the form of logical

implication. Rather the causal relation takes the form of an asymmetric

functional relation in a self-contained or closed system. These

points are illustrated in Figure 1.1, which concerns the functional

relation between an effect Y and a cause X. As shown at the top of

Figure 1.1, there are 12 scores on each variable. The variable X has

six possible values (i.e., 1,...,6), and the variable Y has three

possible values (i.e., 1,2,3). Each separate occurrence of an X or a

Y is an event. Thus, this example has 24 events. Each value of X

and Y defines a class of events. For example, X = 5 defines a class

of events with the common value of 5, and there are two events in the X

= 5 class. The variable X is comprised of a set of classes of events.

The term set refers to the six classes of events associated with the six

possible values that may be assumed by X. The set of classes of events

for Y encompasses the three values that may be assumed by Y.

Insert Figure 1. 1 about here

Simon (e.g., 1977, p. 108) viewed a causal relation as a function of

an effect (Y) on to one or more causes (Xs). In this example, we have



one cause, and the functional relation takes the form Y = f(X). It is

particularly imprtant to note that the causal relation between X and

Y is a relation determined over the full range of values on X and Y.

It is not merely a relation between the occurrence of two events (e.g.,

X = 1, Y = 1), or a relation between the occurrence of two classes of

events (e.g., X = 6, 6; Y = 3, 3). Let us now address what Is meant

by self-contained and asymmetric.

The function Y = f(X) is self-contained because one and only

one value (class of events) of Y is associated with each value (class of

events) of X. This implies that the values of Y are determined

completely by the values of X; that is, given knowledge that X has

occurred and the values of X, we can determine exactly the values of

Y. The function is asyimetric because it is impossible to reverse the

direction of causation (i.e., X = f(Y)] and maintain unique

determination. For example, Y 1 is associated with X = 1, 3, or 5,

which means that X cannot be uniquely determined by the knowledge of the

values of Y.

In more general terms, Simon considered that causal relations in

science usually concern quantitative functional relationships, such as

the amount of wheat grown is a function of the amount of rain and the

amount of fertilizer. In the simple case where an effect (Y) is

determined by two causes (x1 and x2), the functional relation is

denoted by y = f (_lI  2 ) , where lower case letters refer to

variables in deviation score form. This means that the occurrence of the

effect y Is dependent on the occurrence of the causes x, and x,

in the manner prescribed by the function f. The function f may take
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many forms. For slmplicity's sake, the treatments in this paper are

generally predicated on linear functions. Thus, for example, the

functional relation y = f(xl, x2 ) expressed in linear form denotes

that y is a function of a weighted, additive combination of the values

of !E and x2 , namely y = B iE + 2 . Mien

expressed as equations, functional relations are referred to as

functional equations.

A functional equation implies that the system is self-contained, which

is to say that the values of the effect y are determined completely by the

function that relates the values of the causes x 1 and x2 to y. For

example, the (linear) functional equation y= B x + B x
iLX.:I _Y-2-=

represents a self-contained or closed system in which values of y are

completely determined by the weighted, additive combination of the values of

K, and T2. The asymmetry of causation may at times be illustrated as

in our example above, where y is completely determined by the function

relating y to 1 and x2, but no function can be found that, for

example, completely determines the values of ii based on a function of y

and x2. Hbwever, the asymetry reflected in a functional equation, in the

context of a causal relation, is typically an imposed asymmetry based on the

presumed order in which variables occur naturally. To ilstrate, the

frequency of automobile accidents may be a function of the amount of snowfall,

but it is unlikely that snowfall is a function of the number of automobile

accidents (Darlington, 1968). Thus, the logic of asymmetry of causal

relations is that setting y = f(x) does not imply that x = f(y).

Causal analysis is generally predicated on a set of variables, where

multiple effects are regarded as functions of multiple causes. Each effect is
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represented by a functional equation, and, based on the natural causal

ordering among the variables, a system of functional equations is devised in

which a variable which acts as an effect in one equation is a cause in an

equation later in the causal order. For example, a simple system may be

comprised by two linear equations, such as = ixl andY 2

b b Yl, where the natural causal ordering is x1 , y1 , and

then-y 2 . The y, and y 2 equations may be regarded as

self-contained subsystems within the system of equations. Furthermore, if

each of the functional equations embedded in the system of equations is

self-contained, then the system is self-contained, which connotes that there

are as many equations as effects to be determined. As we shall see later,

self-containment of a system of equations suggests that parameter

values (e.g., b Ll) in functional equations have a unique value and

may be estimated. We shall also see how these estimates are used to infer the

strengths of causal relations.

In summary, what Simon's functional relation conception of causality

suggests is that we infer the presence of causal relations when we isolate

groups of variables into self-contained systems of functional equations in

which the varying values of some variables (causes) appear to determine

totally the varying values of other variables (effects). Within these

self-contained systems, the causal pathways among variables are determined by

the manner in which the values of certain effects in self-contained

subsystems (functional equations) are themselves determined

by the values of causes, which include effects of other self-contained

subsystems lower in the causal order. The inference of causation is an

inductive inference based on presuming that the functional equations/relations
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describing the causal connections between the values of causal variables and

effect variables observed in the past will continue to hold in the future.

Is Causality Replaced by Functional Relation?

A number of empiricist and positivist writers (e.g., Pearson,

1892/1911; Schlick, 1949; Jeffreys, 1948), have expressed the view, echoed

by some psychologists (cf. Travers, 1981), that causality as a concept has

been cast out of science and replaced by the concept of functional

relationship or by the even less binding connection of contingency. How

does this view contrast with Simon's (1952) view of the causal relation as

an asymmetric, functional relation?

To begin with, Simon's view does not attempt to settle any

metaphysical issues regarding the nature of causality by asserting that

causal relations are to be represented formally by functional relations.

Simon's view is thus ecumenical in that it seeks to provide a common basis

on which scientists of different metaphysical pursuasions may agree when

dealing with the practical problems of demonstrating causality. These

other empiricists, however, have metaphysical commitments when they seek to

equate causality with nothing but functional relations, that is to say,

mathematical descriptions and summaries of regularities observed in

experience. For them the real is only what is known in experience. But

because the phenomenalist psychology of empiricism holds that the elements

of experience are logically unconnected, this rules out necessary

connections in experience. Since, traditionally, causality concerns

necessary connections, causality no longer is a viable concept for

empiricists. Causality must be replaced by the weaker relation of

functional relation, which serves only t: describe the regularities of
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succession of similar kinds of events in experience, these regularities

being products of the mind's associative processes.

More important, however, is that those positivists and empiricsts

rejecting causality in favor of functional relationships have often

stressed the interdependence of variables and even the reversibility or

symmetry of relationships (cf. Bunge, 1959). Much of this thinking can be

traced to the writings of the physicist Ernst Mach, who had a profound

influence on Pearson (1892/1911) and subsequently on the adherents of the

Vienna Circle of logical positivists, which included Schlick (1949) cited

above. According to Bunge (1959, p. 91) Mach "...demanded the replacement

of every sort of connection, particularly causal connections, by functional

relations expressing a symmetrical interdependence." To illustrate this

view, Bradley (1971) reported, Mach would cite how the pressure p of a

given mass of gas is uniquely determined by its absolute temperature T

and volume V, according to the equation pV/T = r (a constant). But

then Mach would caution that none of the quantities p, V, or T should

be thought of as a cause of the other, but rather as functions of each

other. According to Bradley, Mach was motivated to eliminate the notion of

causality (interpreted as a necessary asymmetric connection) and replace it

with the less binding and more descriptive symmetric connection of

functional interdependence. Functional relations were viewed as describing

regular successions of phenomena by summarizing the phenomenal facts.

In contrast, the econometrician and statistician Nicholas

Georgescu-Roegen (1971) pointed out how the many examples of functional

interdependence cited by Mach and the positivists after him come from

Newtonian mechanics. In Newtonian mechanics there is no unique direction
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in which processes can occur. Events can happen in just the reverse order

as we observe them to happen and still be consistent with Newtonian

mechanics. But Newtonian physicists, Georgescu-Roegen claimed, were faced

with a crisis when they attempted to analyze the phenomenon of heat. The

simple law that heat always passes from hotter to colder bodies is an

asymmetric relationship not derivable fran Newtonian physics (except by

invoking an empirically untestable Interpretation of probability in what

is known as "statistical mechanics"). Yet this simple law, known as the

Second Law of Thermodynamics, underlies the asymmetry of countless

relationships observed in nature and makes meaningful a conception of

causality as an asymetric relationship.

Simon's functional relation conception of causality is based on

asymmetry of relationship. While Simon allowed that asymmetry could be

achieved in a definition of the causal relationship by invoking the concept

that causal variables would measure events occurring before events measured

by effect variables, he chose instead to define causal order independent of

time. For him a system of (linear) causal relations would be represented

by a self-contained system of independent and consistent (nonhomogeneous)

linear equations. Causal ordering in such a system would be indicated by

the order in which one would have to solve for the variables of the system.

We are not yet ready to describe further mathematical details of Simon's

self-contained equations and causal order in such a system. As discussed

later, the equations selected for such a system would be based on

relationships observed in prior experience or those derived from theory.

The important point here is that Simon believed he had distilled what the

scientist, of whatever epistemological persuasion, is concerned with when
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he/se seeks to establish causes, which is to establish functional

relations among variables in a self-contained, closed system.

The impact of Simon's perspective is seen in econometrics and sociology,

where methods of confirmatory analysis using structural equations and path

analysis developed partly under Simon's influence. Unfortunately, Simon's

views on causality seem to have been overlooked by many philosophers of

science as well as by authors of popular textbooks on causality in the social

sciences. For example, no references to Simon appear in Cook and Campbell

(1979), Heise (1975), or Kenny (1979), although many treatments in these texts

reflect functional relations. In this paper, we will adopt Simon's view that

the causal relation is a functional relation among sets of classes of events

(i.e., variables) within a self-contained, closed system.

We must make one final observation concerning the metaphysical status

of the functional relation conception of causality we will use in this

paper. We do not claim to exhaust the idea of causality with such a

concept. Actually, we are only interested in formulating conditions under

which causal relationships may become known, not in stating what causality

is. It is the phenomenalist empiricists who wish to make the

metaphysical claim that causality as a functional relation merely

summarizes regularities of succession in phenomenal experience, which for

them is all there is to reality. We will make no such claims, since they

are not relevant to our task in this paper.

Functional Relations in Psychology

Theory plays a major role in the formulation of functional relations

in psychological research. The functional relation view of causality

suggests that in order to infer causal relations we must isolate groups of
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variables into self-contained systems in which the varyng values of effects

appear to be determined totally by functions of values of causes. However,

because the number of possible causal relations among psychological

variables is infinite, it is necessary to rely on theory to identify the

variables to be isolated and included in functional equations in a

self-containedsystem. Not all psychological theories furnish a meaningful

basis for accomplishing this chore, and we will devote considerable space

in the next section of this paper to the conditions which must be

reasonably satisfied if a theory is to be relied on to develop functional

equations In a self-contained system. We preface this discussion with

interpretations of functional relations and self-containment in regard to

their use in psychology and other disciplines in which functional relations

take the form of probabilistic function equations.

Functional relations were represented above in the form of

deterministic functional equations. For example, the linear functional

equation = x_ + B is deterministic because y is

completely determined by x1 and x2 . However, in many areas of

psychological research, variation in effects may occur for reasons other

than variation in the causes included explicitly in a functional equation.

For example, variation may occur in an effect because of variation in

causes not included explicitly in an equation. These causes may have

minor, independent, and unstable influences on an effect, in which case

they are referred to as random shocks. The likelihood of the occurrence

of random shocks in psychological research suggests that it is usually

necessary to think of functional relations and functional equations in

probabilistic terms rather than in deterministic terms.
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When expressed in probabilistic terms, causal models involving linear

functional relations take the form y = f(xl1x2,d), and a linear

functional equation has the formY = B + B 2 +d.

"Linear" is emphasized because we focus on linear forms of probabilistic

functional equations in this discussion. These forms differ from linear

deterministic functional equations because probabilistic equations include a

disturbance term, designated by "d". The disturbance term is a surrogate

that represents all causes of y not included explicitly in the (linear)

probabilistic functional equation. That is, ii and x2 are the

explicitly included causes and d represents all other causes of y.

Disturbance terms almost always include random shocks, which, as defined

above, are causes of y that are minor, independent, and unstable.

Disturbance terms may also include two other types of causes that are

important at this time, namely relevant causes and nonrelevant causes.

A relevant cause is defined as a variable that:

(a) has a nonminor, direct influence on an effect,

(b) is stable,

(c) is related to at least one other cause included explicitly

in a functional equation, and

(d) makes a unique contribution to a functional equation, which

means thar it is not linearly dependent on causes already

included in a functional equation (cf. James, 1980).

A nonrelevant cause is a variable that satisfies conditions (a), (b), and

(d) above. It is not, however, related to one of the causes included
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explicitly in a functional equation.

The distinctions among random shocks, relevant causes, and nonrelevant

causes furnish a basis for ascertaining whether or not a probabilistic

functional equation is self-contained. We will formally define

self-containment for probabilistic functional equations, and then show how

this formal criterion can be restated in terms of random shocks, relevant

causes, and nonrelevant causes.

Like deterministic equations, probabilistic equations must be

self-contained before they can be used to represent functional (causal)

relations. However, unlike deterministic functional equations, it is not

possible to require that the realized (measured) values of causes determine

the values of an effect in probabilistic functional equations, if for no other

reason than that the values of effects will include the influences of

unstable, and therefore unmeasureable, random shocks. It is possible

to define self-containment for probabilistic functional equations in

reference to the expected values on an effect, conditional on the values of

causes included explicitly in a functional equation (i.e., the (conditional)

probability distribution of the effect]. Specifically, a probabilistic

functional equation is self-contained if the realized values of causes

included explicitly in the equation determine the (conditional) probability

distribution of the effect variable (Simon, 1977).

For example, the linear probabilistic functional equation:

y = B < l + + d (1.1)

is self-contained if the conditional expected values of y, given realized

values ofii and !, are provided by B + B

The conditional equation is indicated by:
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E(IxI1,') B xl + B x (1.2)

where E is the expectation operator.

Equation 1.2 requires that solutions exist for B Xand B

which combined with the realized values of and x2, determine the

conditional expected values of y. As shown in the next section of this

report (Condition 5), unbiased solutions exist for B -X' and B x2

only if x1 and ? 2 are unrelated to d. This, in turn, connotes Ehat

a probabilistic functional equation will be self-contained if, and only if,

the cases represented explicitly in an equation are unrelated to the

disturbance term of that equation. That is, Eq. 1.2 is dependent on the lack

of relationship between d and both x and x2 in Eq. 1.1. Thus, a

more fundamental definition of self-containment of a probabilistic functional

equation is that explicitly measured cases are unrelated to the disturbance

term of the equation.

We are now ready to return to the relationship between self-containment

and random shocks, relevant causes, and nonrelevant cases. If the disturbance

term is comprised by random shocks exclusively, then d in Eq. 1.1 cannot be

related to the explicitly measured cases x1 and x2 because, by

definition, random shocks are unrelated to all other variables. Similarly, if

d includes nonrelevant causes,in addition to random shocks, then again d

is unrelated to x1 and ?2 because, by definition, nonrelevant causes

are unrelated to explicitly included (i.e., measured) causes. Thus, we may

conclude that (a) if the d term in a probabilistic functional equation

involves only random shocks and nonrelevant causes, then (b) it is

self-contained because explicitly measured causes will be unrelated to d.

However, if d contains at least one relevant cause, then d will be
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related to at least one explicitly measured cause. That is, a relevant cause

of y that is not included explicitly in the probabilistic functional

equation for y will be included in the disturbance term. By definition,

this unmeasured relevant cause is related to at least one explicitly

measured cause [see (c) in definition of relevant cause], from which it

follow that either x or x2 , or both, will be related to d in Eq.

i.I. Consequently, Eq. 1.2 is not applicable because unbiased solutions do

not exist for B and B and the probabilistic equation given

by Eq. 1.1 is not self-contained. On the other hand, if x1 and

are the only relevant causes of y, then Eq. 1.1 would be self-contained.

This suggests that the most fundamental definition of self-containment for a

linear probabilistic functional equation is that all relevant causes of an

effect are included explicitly in the equation.

Functional equations are assumed to be in linear probabilistic form

throughout the remainder of this paper. We will emphasize, many times, the

points that (a) a probabilistic functional equation can be used to represent a

causal relation only in the condition that the equation is self-contained, and

(b) a probabilistic functional equation will be self-contained only in the

condition that all relevant causes of the effect are included explicitly in

the equation. We will also demonstrate that, in naturalistic studies, it is

necessary to rely on theory to identify relevant causes that should be

included in a probabilistic functional equation, and frequently, to build a

case that causes not included explicitly in an equation are unrelated (or

linearly dependent on) causes represented explicitly in that equation.

Summary

The following ideas were developed in Section 1. Causal relations are
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inductive relations, and take the form of asymmetric functional relations

among certain variables, or subsets of variables, in a self-contained

structure (Simon, 1977). It is not assumed that causal relations are

logically necessary relations or that causal relations take the form of

logical implication. It is assuned that theory plays a major role in the

formulation of functional relations in psychological research, where

functional relations are typically represented by probabilistic, rather than

deterministic, equations. The probabilistic equations must be self-contained

if they are to represent causal relations.

We have adopted Simon's functional relation perspective of causality in

this text. We have also placed major emphasis on the role played by theory in

the formulation of functional relations in psychological research. As we

shall demonstrate, theory is used to isolate groups of variables into a system

of functional equations. It is also used (a) to identify relevant causes that

should be included in a functional equation, (b) to build a case that causes

not included in a functional equation are not relevant causes, and (c) to

specify the causal ordering of equations or subsystems within a system of

equations. Finally, we will illustrate the intrinsic interplay between theory

and data in the conduct of a confirmatory analysis.

2. CCNDITIONS FOR CONFIRMATORY ANALYSIS AND CALSAL INFERENCE

The objective of this section is to describe the conditions which justify

the use of confirmatory analysis to evaluate whether the causal hypotheses

indicated by functional relations have scientific utility. Ten conditions are

introduced and discussed. The first seven conditions pertain to the

appropriateness of a theoretical model for confirmatory analysis and causal

inference. Reasonable satisfaction of these conditions suggests a
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well-developed, stable theoretical model in which self-contained

(probabilistic) functional equations specify hypothesized causal relations

among causes and effects. These conditions are: (1) formal statement of

theory in terms of a structural model, (2) theoretical rationale for causal

hypotheses, (3) specification of causal order, (4) specification of causal

direction, (5) self-contained functional equations, (6) specification of

boundaries, and (7) stability of the structural model.

The final three conditions concern the operational aspects of

confirmatory analysis in a population or sample. The conditions are: (8)

operationalization of variables, (9) empirical confirmation of predictions I-

empirical support for functional equations; and (10) empirical confirmation of

predictions II: fit between structural (i.e., theoretical) model and

empirical data. The presentation of Conditions 8 through 10 focuses on

variables associated with directly observable events, which are referred to as

"manifest variables". As noted earlier, an overview of the latent variable

form of analysis is presented separ!.tely in Section 4. Finally, while

reasonable satisfaction of the 10 conditions to be described here is required

for causal inference, we emphasize their role in confirmatory analysis in this

section and their role in causal inference in Section 3.

Conditions Pertainin to Appropriateness

of Theoretical Models

Condition 1: Formal Statement of Theory in Terms of a Structural Model

Any attempt to explain the occurrence of natural events in terms of

functional relations must begin with a well-developed theory. By the term

"theory" we mean a set (or sets) of interrelated causal hypotheses which

attempt to explain the occurrence of phenomena - physical, biological, social,



25

cultural, or psychological (Singh, 1975). The basic components of a theory,

or a theoretical model, are as follows (cf. Dubin, 1976; Merton, 1968;

Singh, 1975):

(1) Phenomena, or the variables that act as causes and effects.

(2) Causal connections among the variables. A causal connection

refers to the hypothesized causal association between one cause and one effect

(e.g., 2il- yl). The total pattern or structure of causal connections

among ordered variables, where order reflects the natural sequence of

occurrences of events represented by variables, is the essence of a

theoretical model. It is this structure of causal connections that provides

the basis for the development of functional relations and functional

equations, which relate each effect to all of its presumed causes.

Consequently, the structure of causal connections should specify the specific

variables that are to be related functionally, the causal ordering among the

variables, the direction of causation for each causal connection

(unidirectional or reciprocal), and the function that relates each effect

variable to all of its relevant causal variables. The last point implies that

the structure of causal connections, or the system of functional

equations, should be self-contained.

(3) A theoretical rationale for each causal hypothesis (causal

connection) that describes the processes through which a cause acts on

(operates on, produces) an effect.

(4) Boundaries, which specify the contexts (e.g., types of subjects

and situations) within which the functional relations/equations are expected

to hold.

(5) Stability, which implies that the hypothesized structure of causal
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connections will be consistent over specified time intervals. Inasmuch as the

structure of causal connections is represented by a system of functional

equations, stability suggests that the functional equations will be invariant

over specified time intervals.

In its initial development, a theory is based typically on induction,

wherein observations of events lead to hypotheses that certain variables are

related causally and that certain processes or functions generate the

relations. In this regard, previous experience will often suggest to the

theory builder the form that functional relations might take. Additional

theoretical work is often needed, however, to develop the theory so that it is

amenable to confirmatory analysis. This development includes consideration of

the form of the theory with respect to (a) its breadth or elaborateness; (b)

its depth, which is reflected by the complexity of variables and the molarity

of causal hypotheses; and (c) the structure of causal connections, which is

typically stated in the form of a structural model. Each of these

considerations is discussed below. We will then proceed to discussions of the

other aspects of a theory.

Form of a Theory - Elaborateness

A theory may be very simple and involve just one effect and the cause(s)

that is (are) presumed to be functionally related to that effect. For

example, one might hypothesize that increases in role expectations,

communicated by management to subordinates regarding quality and quantity of

subordinates' performance, may cause subordinates to perceive that they have

too much work to do (i.e., are overloaded-cf. James & Sells, 1981). This is

a "nonelaborate theory", consisting of just one effect (role overload) and two

causes (expected quality of role performance and expected quantity of role
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performance). Nonelaborate theories are acceptable from the perspective of

confirmatory analysis if the model is self-contained, which is to say that all

relevant causes of role overload are contained in the theoretical model (i.e.,

the model is self-contained).

A theory may be made more elaborate by adding effects, and as necessary,

other relevant causes of those effects. For example, perceptions of role

overload may be thought to cause state anxiety, defined as "subjective,

consciously perceived feelings of tension, apprehension, (and] nervousness,

accompanied by or associated with activation of the autonomic nervous system

(ANS)" (Spielberger, 1977, p. 176). The guiding rule is that one should

include all relevant causes of each effect in the theoretical model. In this

example, if no other causal variables are added to the model, then the theory

builder is assuming that role overload is the only relevant cause of state

anxiety.

Finally, one can develop highly elaborate theories. To pursue the

present illustration, role expectations, role overload, and anxiety might be

viewed as a subsystem of a more general system, and one might propose both

direct and indirect causes of expected quantity and quality of work (e.g.,

increases in demand for product), as well as direct and indirect influences of

anxiety on other psychological phenomena, such as performance and withdrawal

behaviors. The rule remains; each time the theory builder enters an effect

into the theoretical model, he or she must also enter all relevant causes of

that effect.

In later discussion it will be argued that the more elaborate the theory,

the more "faith" one may have In the results of a confirmatory analysis.

Nevertheless, confirmatory analysis may be applied to nonelaborate or

M4if_
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"moderately" elaborate theories insofar as the theories are self-contained.

It must be recognized, however, that nonelaborate and moderately elaborate

theories are typically subsystems chosen from more global theoretical

subsystems or systems. While acceptable, such selection obviously limits the

explanatory value of the chosen theory because the functioning of a specific

subsystem depends on the functioning of more general sybsystems and systems.

For example, expected quality and quantity of role performance may be the

only relevant causes of role overload, but this self-contained model will be

influenced by the causes of expected quality and quantity of role performance.

Form of a Theory - Molar Causal Connections and Mediating Mechanisms

In addition to elaborateness or breadth of a theory, it is also

possible to view a theory in terms of its depth by assessing the

"complexity" of variables and "molarity" of causal connections included in

functional relations. To contrast extremes, molar "refers to causal laws

stated in terms of large and often complex objects", whereas micro, or

micromediation, "refers to the specification of causal connections at a

level of smaller particles that make up the molar objects on a finer time

scale" (Cook & Campbell, 1979, p. 32). To illustate, a causal hypothesis

that perceived role overload will result in state anxiety implies a molar

causal connection between two complex variables. A more specific

micromediational model, or "micromediational chain", is presented in later

discussions of theoretical rationale for causal hypotheses (Condition 2),

where it is postulated that perceived role overload produces state anxiety

by a model such as: role overload * anticipated failure+ anticipated

negative consequences of failure (e.g., reprimand) -o state anxiety.
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As discussed by Cook and Campbell (1979), it is not only acceptable

but often necessary to employ theoretical models involving molar causal

connections among complex variables. It follows that the more

micromediating variables which serve to connect complex variables will not

be included explicitly as separate variables in the theoretical model,

and therefore, functional relations and equations. It is possible,

however, to attempt to identify at least the more important of these

mediating variables, and to propose how these variables enter into the

causal processes. That is, one uses mediating variables to attempt to

explain how one complex variable produces or acts on another

complex variable. Thus, as in the example above, role overload and state

anxiety may be the only variables included in a theoretical model. But

reference may be made to mediating processes, such as anticipated failure

and negative consequences resulting from failure, that lead to associations

between role overload and state anxiety. We shall use the term mediating

mechanism to refer to an intervening or mediating variable that (a) is

not included explicitly in a theoretical model, but (b) is used to help to

explain the processes by which a complex cause produces a complex effect in

a molar causal connection.

Failure of a mediating mechanism to operate as expected for some, but

not all or even most, subjects may be regarded as a relatively random event

and therefore one form of random shock. Such failures render molar causal

connections, and therefore functional relations and equations, both

fallible and probabilistic (Cook & Campbell, 1979). That is, a cause may

not produce an effect because a mediating mechanism on which the causal

connection depends is not functioning in the presumed manner for some
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subjects. Thus, we might say that a cause will produce an effect dependent

on the occurrence of the presumed mediating mechanisms for all subjects,

which is a probabilistic statement and one of the reasons why functional

equations are represented in the form of probabilistic equations. Finally,

the probabilistic nature of a causal hypothesis is associated logically

with the molarity of the causal connection. Cook and Campbell (1979, p.

33) noted that "...it is probably the case that the more molar the causal

assertion and the longer and more unspecified the assumed micromediational

chain, the more fallible the causal law and the more probabilistic its

supporting evidence."

7b avoid potential confusion, it is helpful to distinguish between the

role of mediating mechanisms and relevant causes in functional equations.

Consider the following functional equation that relates two complex

variables: y = B x + d . If w is a relevant cause of X,

then w must be entered into the equation; that is, y = B x + B w +

dI. Note that (a) x is still presumed to have a direct effect on

y, (b) the equation is not self-contained without explicit inclusion of

w, and (c) w may or may not be a complex variable. However, if w is

a mediating mechanism for the function relating y to x, then the model

has the form x - w- y. This model indicates two functional

equations, namely w = Bx + and y = B + d.

This suggests that explicit inclusion of w renders the (x,y)

relationship indirect, where the effect of x on y must now pass

through w. Furthermore, x is no longer a relevant cause of y

because, by definition, relevant causes must be directly related to

effects. On the other hand, if w is unmeasured, then relative to the
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molarity of the theory, x is a direct cause of y and the molar

connection may be regarded as self-contained.

In summary, many theories in psychology are nonelaborate or

moderately elaborate, involving molar causal connectiorslinking a Ze-w

complex variables. Such theories may be quite useful for testing selected,

self-contained causal subsystems. However, more elaborate theories

involving more holistic subsystems or systems, as well as explication and

inclusion of mediating mechanisms in theoretical models, are clearly the

long-term objectives. Nevertheless, regardless of the scope of a

particular theoretical model, if it is self-contained then it is possible

to proceed to the next step in confirmatory analysis, which is the

development of a structural model.

Development of Structural Models

It must be possible to propose a theory in quantitative terms if it is

to be subjected to confirmatory analysis. The process of confirmatory

analysis typically begins by specifying the presumed structure of causal

connections among the variables in the form of a graphic model.

Consider the graphic model of the oversimplified theory regarding

causes and effects of role overload in Figure 2.1. (All variables are

regarded as complex and .thus all causal connections are molar.) The model

predicts that (a) expected quality ( and expected quantity (x2 )

of role performance are causes of perceived role overload (y); (b)

role overload (y,) is a cause of state anxiety (y2); and (c)

expected quality (xl) and quantity (x2 ) of role performance do not

cause state anxiety (y 2 ) directly, rather they affect it indirectly

through their effects on the intervening role overload perceptions
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(yl). Representations of theory or theoretical models are referred to

as causal, or structural, models; the term "structural" is used to denote

that the structure of the causal connections has been specified.

Insert Figure 2.1 about here

Definition of terms. In regard to the structural model, yl and

Y2 are referred to as endogenous variables; an endogenous variable

is a dependent variable (i.e., effect) whose occurrence is to be explained

by the structural model. x 1 and ?2 are exogenous variables.

An exogenous variable is a predetermined variable that acts as a cause but

whose occurrence is not to be explained by the model.

The curved (double-headed) arrow between and means that

although the exogenous variables may be related, their relationship is not

to be explained by this particular structural model. The straight

(single-headed) arrows in the model represent the hypothesized causal

connections. The lack of straight arrows between the two exogenous

variables (x1 and !2 ) and the endogenous Y2 variable reflects

the hypotheses that the exogenous variables do not have direct causal

connections with Y2"

Associated with each straight arrow is a structural parameter

(i.e., B , B , B ). The structural parameters assume

values that reflect the strengths of the causal relationships.

Specifically, each structural parameter reflects the amount of change

in an effect (endogenous variable) that results from a unit of change

in a cause (exogenous variable or preceding endogenous variable), with

i'
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all other causes of that effect held constant. For example, B is a

shorthand notation for B , which indicates that x2, also a cause

of I, is held constant when the effect of x1 on is ascertained.

Thus, B is the unique effect of x21 on yI. A key

objective f confirmatory analysis is to estimate the values of the

structural parameters; this process is addressed in Condition 9.

The small "d's" associated with each of the two endogenous variables

are the disturbance terms. Disturbance terms involve variation in an

endogenous variable that is not to be attributed to the causes of that

variable included explicitly in a structural model. For example, d

accounts for all variation in Y1 that cannot be attributed to x 1

and x2. he straight arrow from d to yl suggests that

these other sources of variation are also causes of Yl In the

structural model, the sources of variation in d as well as

d , include random shocks and/or unmeasured or omitted causes, which

may or may not be relevant causes. In an actual confirmatory analysis with

realized values on variables, a disturbance term may also include (a)

random measurement errors in the effect and the causes, where the primary

concern is error in one or more of the causes; and (b) nonrandom

measurement errors, such as bias in the scales of measurement and method

variance. Random shocks and unmeasured causes are discussed in greater

detail in Condition 5; random and nonrandom measurement errors are

addressed in Condition 8.

Functional equations. The formal structural model in Figure 2.1

specifies the form of the functional equations that are to be used to

represent the functional relations. There are two endogenous variables in
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Figure 2.1, and thus two functional relations, namely Yi =f(xl'

2' 1l) and -2 = f(Yl' d2). Assuming linearity and

additivity, the functions may be viewed as taking the form of weighted,

additive combinations. Specifically, the functional equations are, in

deviation form:

Y= B x + B X_+d(21

Y-2 = B l, +d (2.2)
"Y-241 - _Y2

To suimmarize, the structural model indicates the functional

relations that relate effects to causes and specifies the form(s) of the

functional equations that are to be used to represent functional relations.

However, specifying functional relations and equations does not

necessarily mean that the processes by which causes produce effects have

been explained. For this we shall often need a theoretical rationale.

Condition 2: Theoretical Rationale for Causal Hypotheses

Simon (1977) suggested that some functional relations are

self-explanatory in the sense that the processes by which a cause produces

an effect are self-evident. To illustrate, the processes by which

fertilizer and rain act to influence the growth of wheat need not be

explained by additional theory or mediating mechanisms because wheat growth

is generally accepted to be a function of rain and fertilizer (although

type of fertilizer is a relevant question). Darlington (1968) made a

similar point regarding snowfall and increases in automobile accidents.

However, many relations among variables are more subjective, and what may

appear to be a functional relation is instead merely a covariation among

variables that are not causally related. A classic example used by

philosophers to indicate covariation without causation is the correlation
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between the occurrence of night and the occurrence of day. This

covariation is spurious; covariation between night and day is due to common

causes (e.g., the earth's rotation about its axis and the sun). This

example highlights the point that an attempt to specify the processes by

which night causes day, or vice versa, would likely preclude an erroneous

causal hypothesis that night is a function of day.

An attempt must be made to separate nonobvious functional relations

from simple covariation by proposing a theoretical rationale for the

functional relations. Prior experience and observation are helpful in

identifyng covariation among variables, where the covariation may reflect a

functional relation. The theoretical rationale is typically obtained by

development of a theory from careful oLservations or by deducing from

an existing theory a proposal of how causes produce effects; that is, an

explanation of why variables covary. It is also typical that the

theoretical rationale involves the introduction of mediating mechanisms to

help to explain molar causal connections among complex variables.

Tb illustrate these points, a theoretical rationale is developed

for both the causes of role overload and the role overload - state anxiety

causal connection in Figure 2.1. Beginning with role overload, prior

experience in work envirorinents may suggest that management's decision to

increase expectations for quality (_il) and quantity (x2 ) of role

performance results in perceptions of overload (yi) on the part of

subordinates. %bile this observation implies a functional relation between

and Xl and _2, it does not necessarily specify how it is that
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quality/quantity expectations produce role overload. A theory of "stress"

might serve this purpose (cf. Katz & Kahn, 1978). For example, it might be

postulated that increased expectations for higher quality output in shorter

time spans results in perceived overload because these expectations exceed

both physical and personnel resources (e.g., demands for quality exceed the

tolerances of machinery and the technological training of personnel) as well

as time resources (e.g., the quantity of expected output cannot be achieved in

the existing work-day or work-week). In short, perceived overload occurs when

role prescriptions and demands exceed available resources and time. 1

The explanation above assumes the presence and operation of a number of

mediating mechanisms. For example, the presumed causal connection between

increased demands for quality and perceived overload is a molar causal

connection between two complex variables. This relationship depends on such

things as accurate communication of expectations to subordinates from

management, cognitive comparisons of resources and demands on the part of

subordinates, and assignment of similar meaning to the environment by all or

most subordinates (i.e., all or most subordinates perceive similar levels of

role overload). The molar causal connection may in fact be true, but can only

be stated as a probability because the mediating mechanisms might not function

in the presumed manner for all subordinates (e.g., a partially brain-damaged

subordinate may not be able to make the presumed cognitive comparisons).

A theory of stress may also be used to derive a theoretical rationale for

the molar causal connection between (state anxiety) and y1 (role

overload). Subordinates' perceptions that their role performance is adversely

affected by inadequate resources should signify to them that they are not

likely to succeed. This perceived or anticipated likelihood of failure

-L.....--_,____.. 

j
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should arouse conscious affective states of tension and apprehension

because failure should result in negative consequences, such as reprimands,

failure to be promoted, or dismissals. Thus, the causal connection Yj

y2 is dependent on a theoretical rationale involving several mediating mechanisms,

namely Yl (role overload) - anticipated likelihood of failure +

anticipated likelihood of negative consequences -Y2 (state anxiety).

Here again mediating mechanisms render the functional relation

probabilistic if any one of the mechanisms does not operate as expected for

all subjects. To illustrate, while role overload may be perceived, such

perceptions might not lead to feelings of tension and apprehension if

subordinates do not anticipate an association between overload and failure.

Consequently, the occurrence of role overload might not lead invariably to

anxiety for all subordinates and the functional relation is probabilistic.

In conclusion, many functional relations in psychology are nonobvious and

involve molar causal connections among complex variables. A theoretical

rationale involving mediating mechanisms is therefore required to propose how

causes produce effects. An important contribution of a theoretical rationale

is that it assists in differentiating functional relations from simple

covariation. Another contribution is the identification of at least some of

the mediating mechanisms on which functional relations depend. In the

situation where a functional relation receives only weak probabilistic support

in a confirmatory analysis, or is disconfirmed by that analysis, the presuned

operation of mediating mechanisms is a key source for reevaluation.

Condition 3: Specification of Causal Order

The causal order is typically thought of as a temporal order or sequence
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in which causes occur before effects; a causal order must be specified for

each causal relation. It is also typical to assune that a time interval, or

causal interval, intervenes between the occurrence of a cause and the

occurrence of an effect. This assumnption may prove to be a problem, however,

because "in many instances where the scientist speaks of cause (e.g., 'force

causes acceleration'), no time sequence is involved" (Simon, 1977, p. 82).

Simon (1977) "avoided" the time sequence and causal interval issue by arguing

that the causal order anong a set of variables is given by the order in which

variables occur naturally in an asymmetric, self-contained system of

functional relations, and, therefore, the order in which one would solve for

the values of the variables in a system of ordered functional equations.

Figure 2.1 and functional equations 2.1 and 2.2 illustrate a presuined

causal order; the ordering of equations 2.1 and 2.2 denotes that xI and

A2 occur before YI and that occurs before Y2. Causal intervals are

not specified for the causal connections. This does not imply that causal

intervals are unimportant (in our opinion), and we will discuss causal

intervals both below (briefly) and in a nunber of the remaining conditions.

Nevertheless, the point here is that the causal ordering among variables,

with the exception of purely exogenous variables (i.e., ? l and x2),

is given by the presLuned ordering of functional relations and, therefore,

the ordering among the functional equations. This rationale is especially

pertinent to cross-sectional designs where no time intervals are involved

empirically (i.e., all data are collected at the same time). On the other

hand, this reasoning means that one is relying on theory to establish a

causal ordering among variables inasmuch as the functional equations are

themselves given by theory. This may also prove to be problemsome, as

~I
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discussed below.

The important question with respect to causal order is whether the

presumed causal ordering is correct. Consider, for example, that causal crder

is easily established for many naturally occurring events, such as the use of

heroin precedes withdrawal symptoms. On the other hand, causal ordering among

other variables is not generally obvious and is subject to misspecification.

To illustrate, Zajonc (1980) challenged the widely accepted model that

perceptions (P) of situations (S) precede affective reactions (A) to

situations (i.e., S-). P - A). Focusing on the cognitive processing of

"hot cognitions" (e.g., perceptions of danger) , Zajonc proposed and supported

a model of the form S + A - P, which suggests that differentiated

cognitive interpretations (P) are a result of an attempt to explain the

affect (A) which occurred almost simultaneously with the presentation of

S. If generalized to the structural model in Figure 2.1, one might argue

that anxiety (y2) occurs prior to perceptions of role overload

This illustration serves to point out that (a) causal ordering among

variables, especially subjective constructs such as perceptions and

affect, is often not obvious; (b) one must rely frequently on theory to

propose a causal order; and (c) the theory may be wrong. Now, it is true

that a causal order must be specified before a confirmatory analysis is

conducted, and that one should not explore different causal orders with

the sane set of data in order to optimize goodness of fit between a model

and data (Duncan, 1970, 1975). But it is also true that one may test for

alternative causal orders with the same set of data (cf. Billings &

Wroten, 1978). This is possible only if structural models specifying

different orders are proposed prior to the analysis of data. In other
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words, if different theories suggest different causal orders, and if the

theories furnish structural models with conflicting (and empirically

testable) predictions, then it is possible to determine which of the

models, if any, has the best fit with the data (cf. Griffin, 1977).

As a final point, it is often thought that the establishment of a

causal order is facilitated by the use of a time series form of design,

where measurement of presumed causes precedes measurement of presumed

effects by a discrete, identifiable time period (cf. Ostrom, 1978).

However, measuring presumed causes before presumed effects in no way

implies that the true causal order is consistent with order of measurement

(cf. Rozelle & Campbell, 1969). Moreover, the times of measurement

(measurement intervals) must correspond closely to the true causal

intervals in a time series design (cf. Kenny, 1979), which raises an

obvious problem for psychology inasmuch as causal intervals are often

unknown. Time series designs are discussed in the next condition and in

later conditions. The key points here are thac causal ordering and time

of measurement in a time series analysis should be dictated by prior

knowledge of causal intervals and a structural model; time of measurement

should never dictate causal order, causal intervals, or the structural

model.

Condition 4: Specification of Causal Direction

Up to now we have focused on unidirectional, or recursive relations

of the form x * :. This emphasis was purposeful and designed to

maintain consistency with Simon's (1977) view of causality as an

asymmetric functional relation. However, studies of causality in science
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also allow for nonrecursive relations which take the form y

This form implies reciprocal causation between and

where the variables mutually affect one another. The criterion for

Condition 4 is that all direct causal connections within a structural

model must be specified as either recursive or nonrecursive.

Nonrecursive Mdels

A nonrecursive model involving reciprocal causation is presented and

discussed below. The discussion includes an interpretation of causality

which, following an amendment to Simon's views, allows for reciprocal

causation. A distinction is then made between nonrecursive and cylical

recursive models.

A nonrecursive structural model based on a study by Kritzer (1977) and

used by James and Singh (1978) to illustrate reciprocal causation is presented

in Figure 2.2. As with recursive models, the x. designate exogenous-1

events, the Yi designate endogenous events, the B'5- reflect structural

parameters, and the d designate disturbance terms. Functional-xi
equations for nonrecursive models are developed in the same manner as those

for recursive models; an equation is constructed for each effect, and includes

all causes having a direct causal connection with that effect. The functional

equations for Figure 2.2 are (assuzning linearity and deviation scores):

B y + B xl + B 2 + d (2.3)

B= + B x +B x + +d (2.4)

By convention, endogenous variables involved in a reciprocal relation

are included in a functional equation before the exogenous variables
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(e.g., y2 is placed before and x2 in Eq. 2.3).

Insert Figure 2.2 about here

The structural model and functional equations are based on the following

causal hypotheses:

1. The amount of violence employed by police at a political protest

event the extent to which police use increasingly more

dangerous controls) is a function of (a) the degree to which police are

prepared for or anticipate violence, as indicated by the presence of riot

equipment (xl), and (b) verbal provocation by protesters,

operationalized by the extent to which obscenities are collectively

shouted by demonstrators (x2 ). ? l and 2 are exogenous causes

of 1i' and precede 1y in the causal order.

2. The amount of violence evidenced by protesters collectively

(-2 " operationalized on a scale ranging from protestors' use of

anti-police slogans to protestors' use of weapons) is a function of (a)

the conscious attempt by protesters to effect normative controls on

violence (x3) , and (b) the number of (perceived) arbitrary arrests of

protesters made by police (). x3 and are exogenous

causes of Y2 and precede 12 in the causal order.

3. Police violence (11) and protester violence (Y2) are

reciprocal causes of each other. A causal order is not especially

relevant here, either police or protesters may initiate violence. The

point is that an initiation or escalation of violence on the part of

police (protesters) is followed by an initiation or escalation of violence
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by the other party. Furthermore, an escalation by one party influences

escalation by the other, resulting in a dynamic system of mutual

causation. It is presumed, however, that the mutual escalation of

violence will level off, or reach an "equilibrium-type condition" (cf.

Namboordiri et al., 1975), which in part is determined by the values on

the exogenous variables (equilibriunmtype conditions are discussed in

Condition 7). For example, the mutual effects between police and

protester violence is less likely to reach the stage of joint use of

weapons if protesters exercise normative control and police do not have

riot equipment available. Finally, and of major importance, it is assumed

that the reciprocal effects between police and protester violence are

essentially instantaneous, or at least so rapid that reliable causal

intervals cannot be detenined for either the 11 Y2 or Y2 ' Yl

causal effects.

The discussion above illustrates only one of many reciprocal

causation models for the social sciences. With respect to psychology,

reciprocal causation is intrinsic to many theoretical models. For

instance, reciprocal causation is indicated in social learning and

cognitive social learning models (cf. Bandura, 1978; Mahoney, 1977;

Mischel, 1977), interactional psychology (cf. Bowers, 1973; Ekehammer,

1974; Endler & Magnusson, 1976; Pervin, 1968), and social system and

organizational theory (cf. Dansereau, Graen, & Haga, 1975; James & Jones,

1976; Roberts, Hulin, & Rousseau, 1978). Furthermore, confirmatory

analysis provides analytic techniques to test nonrecursive models

involving reciprocal causation. TWo of the most popular of these
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techniques were reviewed recently in the psychological literature. These

methods are two-stage least squares (James, 1981; James & Singh, 1978) and

maximum likelihood estimation (Maruyama & McGarvey, 1980). A review of

these procedures is beyond the scope of this paper, although it is

noteworthy that Kritzer (1977) used the two-stage least squares technique

to test (and support) the hypothesized reciprocal causation between police

and protester violence.

To summarize, each causal connection in a structural model must be

specified as either recursive or nonrecursive. It is also necessary to

stipulate that not all relations in a structural model may be

nonrecursive. This stipulation evolves from the "identification"

question, which is concerned with whether sufficient information is

available to obtain unique mathematical solutions for the structural

parameters in functional equations (cf. Fisher, 1966; Theil, 1971).

Identification is discussed in Conditions 9 and 10. At this time we note

only that functional equations representing nonrecursive relations are

identified if there exists at least one "instrument" for each endogenous

variable involved in a reciprocal relationship. In general terms, an

instrument is an exogenous variable that affects only one of the

endogenous variables involved in a reciprocal relationship. For example,

each of the exogenous variables in Figure 2.2 is an instrument because

each of these variables is a cause of either Y_ or Y2' but not

both y, and -2"

We now turn to the apparent paradox of defining causality as an

asymmetric functional relation and then entertaining the concept of

reciprocal causation. To review briefly, the stipulation of
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asymmetric functional relations was designed (a) to avoid confusion of

causation with logical implication, and (b) to differentiate functional

relations from ordinary mathematical functions, where, for example,

2 2
e = m implies c = e/m. The fidelity of the stipulation is

preserved by stating that Y2 = f(Yl' d2 ) does not imply that

=f(Y-, d). This does not rule out, however, the offering of a

causal hypothesis that Yl = [(y2, d1 ). That is, hypothesizing a

functional relation does not automatically imply a reciprocal form of

relation, but a reciprocal relation may be proposed as part of a

structural model. For example, the hypothesis that child behavior =

f(mother behavior) does not imply mother behavior = f(child behavior).

However, we may propose two functional relations, namely child behavior =

f(mother behavior) and mother behavior = f(child behavior). (Based on

the preceding discussion, instruments would have to be added to each of the

functions before analyses could be performed.)

In sum, reciprocal causation is amenable to confirmatory analysis and

is consistent with a functional definition'of causality. It is necessary,

however to amend Simon's (1977) definition of causality to allow for

reciprocal causation. This amendment is: "Causality is a functional

relation among certain variables, or subsets of variables, in a

self-contained structure, where functional relation does not imply

reciprocal relation but reciprocal relations may be postulated."
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The concluding objective of this section is to distinguish between

reciprocal causation and "cyclical causation". Reciprocal causation

refers to relations of the form yi where the causal intervals for

the -i_ j and y causal connections are rapid and

essentially indiscernable. If, however, a causal interval can be

established for the yi * Yj and _+j-i causal connections,

then one has a structural model such as shown in Figure 2.3. The essence of

this model is that the occurrence of Yl at time t (i.e., ylt) causes

the occurrence of Y2 at time t+l (i.e., Y2t+l ) , where the time

interval between t and t+l is discernible. The occurrence of Y2 at

time t+l then, through a feedback loop shown at the top of Figure 2.3, causes

the occurrence of yl at time t+2 (i.e., Ylt+2)' where again the time

interval between t+l and t+2 is discernable. This cycle repeats itself and

we have cyclical causation.

Insert Figure 2.3 about here

The structural model in Figure 2.3 is a form of time series design.

Of special importance is the fact that it is a recursive model inasmuch

as all causal relations are asymmetric. That is, each causal relation is

recursive because a time interval may be specified between the occurrence

of a cause and the occurrence of an effect (cf. Strotz & Wbld, 1971). We

shall refer to this design as a "cyclical recursive model."

The functional equations for Figure 2.3 are shown below. Y and

-2are specified in the subscripts of structural parameters and disturbance

terms by a "l" or a "2" preceding the time indicator. yl at time t

[
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assumes the role of an exogenous variable (i.e., its occurrence is not to be

explained by this model).

Y2t+l = 2t+l,ltYlt + -d2t+! (2.5)

Ylt+2 = lt+2,2tly2t+l + dlt+2 (2.6)

Y2t+3 = 2t+3,lt+2Ylt+2 + -d2t+3  (2.7)

+d (2.8)
Ylt+4  Blt+4, 2 t+3X2 t+3 + -lt+4

Linear relations and deviation scores are assumed. Furthermore, it must

be assumed not only th c the causal intervals known, but also that the times

of measurement of variables representing y1  and Y2 (i.e., measurement

intervals) correspond closely to the causal intervals. Finally, as discussed

in greater detail in Condition 7, the model and functional equations must be

"stationary". Stationarity refers to the stability of a structural model,

and would be indicated here if the structural parameters with cammon causes

and effects are equal (i.e., B lt+2,2t+ = B lt+4,2t+3B and B2t+l,l t

t2+2t+3,tat+2) n

In conclusion, while there is much to be said in favor of reciprocal

causation (nonrecursive relations) and cyclical causation (cyclical recursive

relations) in psychological research, we shall continue to employ simple

recursive models for illustrative purposes.

Condition 5: Self-Contained Functional Euations

Simon (1977) discussed self-containment in the context of an ordered

system of functional equations representing a recursive structural model.

However, an overview of the basic logic and requirements of self-containent
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is made easier by focusing on a single functional equation. We will

discuss self-containment in this context.

As discussed previously, a (probabilistic) functional equation is

representative of a causal relation only if the functional equation is

self-contained, and an equation is self-contained only if all relevant causes

of the endogenous variable are included in the functional equation. To

illustrate, consider the part of the model in Figure 2.1 which deals with

causes of role overload. This part is reproduced in Figure 2.4a. The linear

functional equation for role overload is, in deviation form:

Ll =y lx + B Yx2 + (d RS) (2.9)

Insert Figure 2.4 about here

Equation 2.9 is the same as Eq. 2.1 with the exception that d has

been specified as being made up exclusively of randon shocks (RS). This

specfication implies that x I and x 2 are the only relevant causes of

which suggests that no other variable exists wich simultaneously (a)

has a direct, norminor influence on Y1 ' (b) is stable, (c) is related to

x and/or x 2 , and (d) is not linearly dependent on x and x2

That is, no other relevant causes exist for Yl Consequently, x, and

x2 will not be related to dy because, by definition, the expected-21
value of the covariance between a variable and randa shock is zero

[e.g., E(x dyl) = E(xIRS) = a RS = 0]. Given that d
A1 ?U -1-

is unrelated to 1 and x2, it follows that the conditional expected

values of l are determined by a conditional function, or
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l2 =B x + B x.2 In other words, the equation
-%2-- -

is self-contained and the functional equation, and functional

relation = f(x'1 X2 'd )
', may be used to represent a causal

relation (assuming that other conditions have been met).

Now, suppose a relevant cause of role overload is not included

explicitly in the functional equation. A possible example of such a

relevant cause is the degree to which the work environment is perceived to

be "impersonal". An impersonal environment suggests that management

focuses on productivity and profit, with little attention given to

employees' needs and capabilities. By contrast, a "personal" environment

connotes consideration of employees' needs and capabilities in addition to

concerns for productivity and profit. Employees are predicted to be

overloaded in impersonal envirorinents, in comparison to personal

environments, because management in such envirorxnents strives for economic

and performance goals even after the personal capacities of employees have

been exceeded. Thus, "impersonality" might be hypothesized to be a major

cause of role overload.

Another important characteristic of a relevant cause is that it

covaries with a causal variablEs)included explicitly in a functional

equation. Impersonality is likely to covary with both expected quality and

quantity of role performance because managers who focus only on

productivity and profit are more likely to demand higher levels of quality

and quantity of performance than managers more attuned to the effects of

their demands on employees. on the other hand, impersonality is not

expected to be redundant with, or linearly dependent on, quality and

quantity of role performance. In other words, impersonality might be
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viewed as having a unique effect on role overload.

A model including impersonality is displayed in Figure 2.4b. The

unmeasured a (impersonality) is represented in the disturbance term for

y 1 , along with the RS component. It is assumed that a fits all the

criteria for a relevant cause of Yl' including relationships with

and K2 (indicated by the curved, double-headed arrows between a and

bo th and x 2 ), but not linear dependence on and The

curved, double-headed arrows also indicate that the relationships between a

and the x's are not to be explained by this model.

he functional equation for Figure 2.4b is

= B x + B x + (d =RS + a) (2.10)

The curved (double-headed) arrows relating a to xI and x2 in Figure

2.4b show that both xI and x2 should covary with d . The expected
-2l

value of the covariance between and d is:
- 1

E(x 1
) = E[x, (RS + a),

= E(xIRS) + E (xl,

0l at (2.11)

where ala is a (population) covariance. A similar derivation

demonstrates covariation between_ 2 and d Y.

Assuming linearity and additivity,- covariation between d and
x and !2 brought about by inclusion of a in d implies that

the functional equation (Eq. 2.10), and the model from-which it was derived,

j-



51

are not self-contained. To be specific, the model in Figure 2.4b is not

self-contained because the conditional expected values of Yl are no

longer determined by the conditional function B x + B x

To achieve self-containment, not only should this function include a term for

a (i.e., B a) , but also the structural parameters for x1 and-jt -Z~

should include controls for a (e.g.,_-l'X)_ a Thus,x-2

with a unmeasured, Eq. 2.10 is misspecified because it omits a relevant

cause. In fact, Eq. 2.10 is not a functional equation because it is not

self-contained. Consequently, neither the equation nor the functional

relation represents a causal relation.

In summary, the condition of self-contaiment is satisfied only if the

causes included explicitly in a functional equation are unrelated to the

disturbance term of that equation. Pragmatically, failure to satisfy this

condition results in biased estimates of structural parameters, which is

demonstrated in Condition 9. Of importance here is the fact that many

published confirmatory studies in psychology have paid no attention

whatever to '-he need for self-contained equations (and systems) (Billings &

Wroten, 1978; James, 1980; Cliff, 1980). Review of these studies reveals

obvious and serious violations of the self-containment condition.

Consequently, it is our opinion that the confirmatory literature in

psychology is inundated with biased estimates of structural parameters, or,

if you wish, equations that have only remote bearing on causal relations.

This is rather difficult to understand inasmuch as almost all introductory

texts on confirmatory analysis highlight the need to include relevant causes

in functional equations, although the terminology and format used to present

this condition vary. For example, the condition is discussed in terms of
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covariation between causes and disturbance terms (Duncan, 1975; Johnston,

1972), covariation among disturbance terms (Namboodiri et al., 1975), and

nonspuriousness (Kenny, 1979).

This problem deserves immediate attention. Unfortunately, such

attention is unlikely to result in total resolution of the problem because

all relevant causes of endogenous variables are not likely to be known

(Duncan, 1975; Heise, 1975; Kenny, 1975). As noted by James (1980, p.

415), "The operative question is not whether one has an unmeasured

variables problem but rather the degree to which the unavoidable

unmeasured variables problem biases estimates of path coefficients [a form

of structural parameter] and provides a basis for alternative explanations

of results." This statement was grounded on the logic that (a) scientific

investigation must proceed based on what is known at the present time,

recognizing that present knowledge is incomplete; (b) one must judge

whether enough information has accumulated to justify both the developnent

of a structural model and the conduct of a confirmatory analysis; and (c)

all known relevant causes should be included in a model and its

functional equations. In other words, given that one believes that it is

reasonable to proceed with confirmatory analysis, then the pragmatic

question is whether known relevant causes are included in the functional

equations. In this regard, it is fair to ask whether prior failures to

include relevant causes in structural models and functional equations

could have been avoided by not only an awareness of the self-containment

condition, but also by more thoughtfully developed structural models. W

recmmend that investigators submit their models to their own and others'
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careful scrutiny, attempting to identify unmeasured relevant causes,

before data are collected. In the discussion of Condition 9 we present a

set of decision steps that assist in evaluating the likelihood that

unmeasured relevant cases will bias estimates of structural parameters.

At that time we will also discuss the use of a time series design that

makes possible the minimization of bias in estimates of structural

parameters created by unmeasured relevant causes.

Condition 6: Specification of Boundaries

Boundaries specify the contexts (e.g., types of subjects and

environments) within which functional relations are expected to

generalize. Given linearity in both parameters and variables, this

condition is satisfied if the functional equation relating an effect to

its causes is not contingent on other variables (Kenny, 1979). In other

words, the functional relation should be additive. The condition is

violated if the functional relation is contingent on, or moderated by,

the values on a third or more variables. This is because a significant

moderator effect implies interaction, from which it follows that direct

causal connections of the form x -)y cannot be interpreted

unambig uo usl y.

Tests for interaction/moderation should be conducted as part of a

confirmatory analysis when prior research and/or theory suggest the

presence of a moderator. If the potential moderator is a categorical

variable, then the values of the structural parameters may be estimated

separately for each value of the moderator, such as one analysis for males

and another analysis for females. Tests for moderation are then often

based on an assessment of whether the estimates of the structural
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paraneters vary as a function of the "subgroups" established by different

values of the moderator (cf. Schoenberg, 1972; J6reskog & Sarbom, 1979;

Specht & Warren, 1976). The term subgroup refers to subpopulations

(subsanples) in hich all relationships are linear and additive (cf.

Zedeck, 1971). If the moderator (or moderators) is a continuous variable

(e.g., age), then more complex analytic procedures are required. In

general, these procedures assume a form similar to moderated regression

(cf. Cohen & Cohen, 1975), although more sophisticated methods are

required for causal interpretation. An excellent and readable discussion

of these methods was presented recently by Stolzenberg (1979). Methods

for estimating structural parameters given nonlinearity in the variables

are also presented by Stolzenberg.

In summary, our primary concern here is to point out that the

existence of a moderator, or moderators, requires careful specification of

the boundaries of a structural model. Taking the simple case where a

moderator is a categorical variable, a different structural model and

accompanying functional equations are required for each value of the

moderator (i.e., each subgroup). In other words, each value of the

moderator forms the boundary for each structural model. Clearly,

moderators inflate the complexity of confirmatory analysis, and attempts

should be made to specify the original boundaries of a structural model in

a manner that reduces the likelihood of moderation. Conversely, failure

to identify a significant moderator will result in inaccurate estimates of

structural parameters and erroneous causal inferences regarding the

magnitudes of causal effects.

Condition 7: Stability of the Structural Model
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A structural model is expected to be stable. Stability is indicated

if the values of structural parameters in functional equations are

invariant, or stationary, over specified time intervals (cf. Pindyck &

Rubinfeld, 1976). The importance of stability becanes clear if its

obverse is considered. If the variables in a structural model are in a

state of flux, then the relationships among the variables are likely to

change rather rapidly. Consequently, data collected at two points in

time, within a relatively short time interval, would provide two different

sets of equations for the same set of variables; that is, the estimated

structural parameters would assume different values at each point in time.

This is an impossible situation because the structural model could not be

generalized beyond a few days or weeks. On the other hand, if the

parameter estimates remain the same over time periods that are reasonable

and meaningful for the variables of interest, then a basis is provided for

generalizing the results of a confirmatory analysis beyond very restricted

time intervals. Note, however, that the stability condition does not

suggest that a particular structural model will be invariant with respect

to long periods of time. The point is that a structural model should

possess enough stability for generalization across a reasonable and

meaningful time interval (cf. Simon, 1977).

Equiibri u-jpe Condition

A subtle but critical implication of the stability condition is that

the values on the variables in a functional equation should have reached a

temporary state of approximate constancy before an attempt is made to

measure them and to use the data to estimate structural parameters. This

temporary state of constancy is referred to as the equilibrim-tM
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condition (Namboodiri et al., 1975). The equilibrium-type condition is

almost unheard of in the psychological literature, a literature which

relies heavily on cross-sectional designs in confirmatory analysis.

Stated directly, it is precisely the assumption that the

equilibrium-type condition has been satisfied that justifies using

cross-sectional designs to estimate structural parameters. Specifically,

cross-sectional designs attempt to model (capture) causal processes that

have already occurred via functional equations that employ fixed constants

(i.e., structural parameters) (Pindyck & Rubinfeld, 1976). Estimation of

the fixed constants is justified only in the condition that the effects of

the exogenous variables on the endogenous variables have worked their way

through the causal system. This means that subjects' scores on the

endogenous and exogenous variables are temporarily fixed, or

"equilibrated" (Heise, 1975), or at least any effect which does occur

during the equilibrium period is so rapid that a temporary equilibrium is

rapidly reestablished (Simon, 1977). Given an equilibrium-type condition,

in combination with (a) sampling that has been of sufficient breadth to

guarantee large differences among subjects on each of the variables, and

(b) functional equations that are appropriate for all subjects in the

population from which a random sample was drawn, one may model prior

causal processes by relying on cross-sectional comparisons across subjects

to infer processes that have been at work for a particular subject over

time (Heise, 1975; Miller, 1971; Namboodiri et al., 1975).

Consider, for example, the structural model for role overload and

state anxiety (Figure 2.1-which, for illustrative purposes, is considered

self-contained). The preceding discussion suggests that, for a
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cross-sectional design, one would want to sample work environments and

individuals so as to guarantee large variations in expected quality and

quantity of role performance, perceptions of role overload, and state

anxiety. Data should be collected only after the effects of role

expectations on role overload, and the effects of role overload on state

anxiety, have had a chance to stabilize (equilibrate) in each work

environment and for each subject; that is, only after values on the

variables have reached a temporary state of constancy. Assuming the

functional relations are applicable for all subjects and work environments

(see Condition 6), analytic procedures discussed in Conditions 9 and 10

could then be used to capture the prior causal processes that generated

the particular configuration or pattern of values on the variables

obtained in the cross-sectional analysis.

An equilibriumx-type condition is also assumed for each wave (time) of

measurement in a time series analysis. bwever, the temporary equilibrium

at a particular time is lost as soon as changes occur in one or more

causal variables. The changes in causal variables produce changes in

effects, and a new temporary equilibrium is established when the values on

all variables reach a new temporary state of constancy. This is referred

to as a "shift in equilibrium levels" (cf. Namboodiri et al., 1975).

Given changes in a causal variables, the time period required to

reestablish a temporary equilibrium in an effect is referred to as the

"equilibration time" (Heise, 1975), which is the causal interval. (It is

assumed that the values of causes remain constant within the causal

interval.) If (a) the functional relations are stationary (i.e., the

structural parameters are invariant with respect to shifts in equilibrium



58

levels) and (b) times of measurenent correspond closely to causal

intervals, then (c) it is possible to attempt to fit functional equations

to the shifts in equilibrium levels. Only then can we use these

functional equations to infer the causal processes that produced the

shifts (cf. Namboodiri et al., 1975).

To summarize, the stability condition is satisfied if the values on

variables have reached a temporary state of constancy for each time of

measurement (equilibriun-type condition) and the functional equations are

the same over specified time intervals (stationarity) . These points apply

to recursive models, including cyclical recursive models. They apply also

to nonrecursive models, although the process by which the endogenous

variables involved in dynamic, reciprocal relationships reach an

approximate state of equilibrium requires advanced mathematics. A

relatively nontechnical overview of this process is presented in Heise

(1975) and Namboodiri et al. (1975)

Equilibrium-type conditions and causal order.

It was suggested in Oondition 3 that the causal ordering among

variables is often less than obvious and subject to misspecification.

Consider, as an example, the popular "social systems" concept (cf. Katz &

Kahn, 1978), which in many areas of psychology gives rise to serious

concerns about causal ordering because all variables in the social

system are regarded as causally related to each other, directly or

indirectly. We illustrate this by the simple, nonelaborate model shown in

Figure 2.5a. This model predicts that increases in organizational control

processes (e.g., implementation of weekly time and effort statements)

cause increases in employee dissatisfaction. These in turn lead to
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increases in dysfunctional behaviors (e.g., absenteeism, clock-watching,

work slowdowns). Dysfunctional behaviors may then serve as a stimulus for

even greater organizational controls, which lead to greater

dissatisfaction, and so on, so that an iterative, recurring cycle of

control - dissatisfaction - dysfunctional behaviors - control is

established. Note that the point at which the cycle begins is arbitrary;

the cycle might also have started with employee dissatisfaction or

dysfunctional behaviors.

This model does not present a major problem for a time series design.

In this type of design, the feedback processes could be captured by a

cyclical recursive model, beginning at an arbitrary point and, for

example, obtaining two measures of each variable, where time of

measurement corresponds to causal intervals (equilibration times). rn the

other hand, this model creates a major problem for cross-sectional designs

because once the cycle is operative, the causal relationships are in a

system of infinite regress and specification of causal order is arbitrary.

Insert Figure 2.5 about here

Translated into the terminology of structural models, this reasoning

implies that all variables are endogenous in a cross-sectional

application of Figure 2.5a. Confirmatory analysis cannot proceed in such

an ambiguous situation. It is necessary to identify predetermined,

exogenous variables that are not caused by endogenous variables, and to

use these predetermined variables to establish causal precedence. In
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pursuit of this objective, Miller (1971) reasoned that even though all

variables in a structural model may be related, particularly over long

periods of time, it is possible that the effects of some variables on

others will be so small or infrequent as to be negligible in a particular

interval in time. Consequently, within a specific time interval that is

relatively short but generalizable, it is possible to establish a causal

order for cross-sectional designs by specifying that (a) causes must have

at least a moderate influence on effects within the time interval, and (b)

a variable whose causal influence is slow and thus does not occur within

the bounds of the time interval should be treated only as an effect.

For example, in the illustration in Figure 2.5 one might postulate

that the effects of organizational control on dissatisfaction, and

dissatisfaction on dysfunctional behaviors, occur much more rapidly than

the effects of dysfunctional behaviors on organizational control. This is

reasonable given that affective and behavioral outcomes are individually

determined and may occur quickly, whereas changes in organizational

control may require multiple inputs from different line managers and staff

(e.g., legal opinions), deliberations regarding alternatives, and time to

implement formal decisions. Consequently, a time interval could be

identified in which control influences dissatisfaction and then

dissatisfaction influences behaviors, but behaviors do not significantly

influence control. Thus, dysfunctional behaviors could be treated only as

an effect. That is, we expect the influence of dysfunctional behaviors on

organizational control to take a period of time greater than that bounded

by the time interval. It must be emphasized, however, that the model

could not be generalized beyond the specified temporal bound.
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In effect, the preceding argument rests on establishing a causal order

using differences in equilibration times and assumptions regarding strengths

of causal influences in a short but generalizable equilibriu-type condition.

To illustrate, consider Figure 2.5b, which displays the presuned causal

ordering in the time interval extending from Lo to t 2 , and an

equilibrium-type condition extending from time t 2 to time t 3 .

Organization control is assumed to have stabilized (equilibrated) at time

t and to remain constant until time t 3 . The interval between

0 and t, is the equilibration time required for employee

dissatisfaction to stabilize; that is, the causal interval for the

organizational control - Employee dissatisfaction causal effect. once

employee dissatisfaction has stabilized, it, like control, is expected to

remain constant through at least time t 3 . The time interval between

t I and t 2 is the equilibration time for the employee dissatisfaction

dysfunctional behaviors causal influence. Finally, the period encompassed by

t 2 to t 3 is the equilibrium-type condition, where the values on all

three variables, including dysfunctional behaviors, are expected to remain

relatively constant. This is the time period within which data should be

collected for a cross-sectional analysis.

The equilibrium-type condition will end at the time that values on

the variable representing organizational control begin to change as a

result of the causal influences of dysfunctional behaviors. However, the

equilibration time for the dysfunctional behaviors - organizational

control causal relation is expected to be substantially longer than the

time period extending from t to t3 . This implies that (a) the

equilibration times represented by t to t and t to t are

O .... . ...
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much more rapid (i.e., shorter) than the equilibration time for the

dysfunctional behaviors-organizational control causal influence, and (b)

given the slow dysfunctional behaviors*organizational control causal effect,

values on the variables may be regarded as equilibrated during the

equilibriLur-type condition (t 2 to t 3 ).

To summarize, in this subsection we have shown how the equilibrium-

type condition is useful when theorizing about causal ordering in

cross-sectional designs. Salient implications of using differences in

equilibration times and assumed lengths of equilibrium-type conditions to

predict causal orderings are (a) "time" is an important consideration in

cross-sectional designs; (b) researchers must be specific about

assumptions regarding time, especially the generalizability of a presumed

causal ordering in regard to time; and (c) different assumptions regarding

time may lead to different causal orderings. On the other hand,

assumptions regarding time are less demanding in cross-sectional designs

than in time series designs. For example, one may "get by" with only

assumptions regarding "relative differences" in equilibration times in

cross-sectional designs, whereas time series analysis requires specific

knowledge (or predictions) of actual causal intervals.

Summary

This completes the discussion of the seven conditions pertaining to

the appropriateness of theoretical/structural models for confirmatory

analysis. The seven conditions are summarized in Figure 2.6. It must be

stressed that lack of reasonable satisfaction of one or more of these

conditions results in questionable use of confirmatory analysis. We shall

continue to emphasize this point in the remaining presentations in this
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text, where false conclusions regarding empirical confirmation or

disconfirmation are shown to result from violation of aspects of

Conditions 1 thrugh 7, as well as Condition 8 (operationalization of

constructs).

Insert Figure 2.6 about here

We now turn to a review of the conditions pertaining to the

operational aspects of confirmatory analysis. Because these operational

aspects are the subject of a rapidly growing literature in psychology, not

to mention large literatures in areas such as econometrics and sociology,

the presentation emphasizes the logic of confirmatory analytic pzocedures.

References are suggested for more extensive treatments of methods.

Conditions Pertaining to operational Aspects of Con-.irmatory Analysis

Condition 8: The Operationalization of Variables

We have used the term "variable" to refer to sets of classes of events

formed because the classes of events have some attribute in common. For

example, we may form a class of events from all those things weighing

X poids. If we have several such classes, each associated with a

different weight, then we may join these classes together to provide a set

of classes of events, all of which have the common attribute weight. This

set will provide the basis for the variable "weight". Now, operational-

ization of a variable means specifying the operations by which we would

seek to assign a specific event (thing) occurring in the world to one of



64

the classes of events of a variable, where the events in each class

share a common value on a scale in which all classes of events have a

common attribute.

An important aspect of operational ization is measurement, which

concerns the assignment of numbers to classes of events so that

relationships among the numbers correspond to empirical relationships among

the classes of events. Measurement is not, however, merely the assignment

of numbers to classes of events of a variable. The relations among the

assigned numbers must correspond to an already established empirical

relationship among the classes of events. A common but grave mistake is to

assume that by assigning numbers in an arbitrary, or at best not well

understood way, one has achieved measurement. The mistake is especially

compounded if one believes there will be magical mathematical techniques,

such as exploratory factor analysis or multidimensional scaling, that will

salvage clear empirical meaning from the numbers.

Vhen numbers have been assigned to the classes of events of a

variable, we then have a quantitative variable. Moreover, when the

numbers assigned to classes of events represent meaningful empirical

relationships among the classes, then we may give empirical meaning to

quantitative relationships between one measured variable and another. In

particular, we will be interested in establishing functional relationships

between variables by employing quantitative variables to represent

variables in functional equations. To do this, we must presume in our

applications that the scientist has quantitative variables with at least an

interval level of measurement. Thus, for the purposes of discussion, we

will assume that all forms of variables are, or may be, represented as
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3
quantitative variables with interval scales. Consequently, the term

quantitative is not specified explicitly.

The preceding discussion of operational ization of variables and

measurement focused on manifest variables, which were defined earlier as

variables associated with directly observable events. The empirical

content of a manifest variable is reflected directly by assigning

observable events to values on the measurement scale of the variable. We

also introduced earlier the term latent variable, which Wes defined as an

abstract or theoretical construct associated with presumed, but not

directly observable, events. Latent variables cannot be measured directly,

rather they derive their empirical content through linkages with the

directly measurable manifest variables. A latent variable is usually

portrayed as a ccmmon factor which acts as a cause of one or more manifest

variables and whose empirical content can only be assessed indirectly by

examining empirical relations among manifest variables. A latent variable

is operationalized in the sense that attempts are made to articulate not

only linkages between hypothetical constructs and manifest variables, but

also linkages among hypothetical constructs. Both of these attempts to

articulate a latent variable are dependent on empirical relations among

manifest variables.

When each theoretical construct (latent variable) is represented by a

single corresponding manifest variable in a structural model, the model

is referred to as an observed or manifest variable design. In this

case, each manifest variable is used as a direct surrogate of a thoeretical

construct, and relationships among the manifest variables are used as

direct surrogates of relationships among the constructs. When manifest
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variables are used in this manner, it is critical that the variables be

accurate representations of the constructs. Accurate representations are

indicated when (a) the manifest variables are, technically, perfectly

reliable, although high reliability is generally considered sufficient for

reasonable satisfaction of this condition (cf. Duncan, 1975); and (b) the

manifest variables, and relationships among the manifest variables, are not

subject to, or at least are minimally influenced by, nonrandam measurement

errors introduced by extraneous, unmeasured influences or improper

measurement procedures. Included in the broad category of nonrandm

measurement errors are: (a) aggregation and disaggregation bias (cf.

Borgatta & Jackson, 1980; Firebaugh, 1978; Hannan, 1971a, 1971b); (b)

ceiling and floor effects in measurement scales (cf. Carroll, 1961); (c)

classification errors, such as reducing a psychometrically reliable and

valid continuous scale to a dichotomy (cf. Namboodiri et al., 1975); (d)

method variance, which suggests that covariation among manifest variables

representing different constructs is spuriously inflated due to a common

measurement procedure (cf. Campbell & Fisk, 1959; Cronbach & Meehl, 1955);

and (e) serially correlated errors of measurement resulting from the use of

the same measurement scale(s) in two or more waves of data collection (cf.

Werts, Linn & Jdreskog, 1971).

Psychologists are generally aware of the basic tenets of scale

development, reliability, and most of the concerns associated with

nonrandam measurement errors. They are also aware of the fact that it is

extremely difficult, and at times impossible, to develop measurement

instruments that encompass only small amounts of measurement error and are

-ji
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free of nonrandom measurement errors. Nevertheless, while some slippage

is allowed in meeting assumptions regarding random and nonrandom

measurement errors in confirmatory analysis with manifest variables, the

degree of slippage allowed is comparatively smaller than psychologists

have enjoyed in exploratory (e.g., correlational) analysis.

The reason for insisting on more rigorous psychometric and

statistical criteria is that the investigator is playing for higher stakes

in confirmatory analysis. Because the aim of confirmatory analysis is

causal inference and explanation, confirmatory analysis must be based on a

firmer psychometric and statistical base than is often found in

exploratory studies. Thus, for example, "reasonable satisfaction" of the

reliability assunption in a confirmatory analysis on manifest variables

still requires high reliabilities. While available research does not

allow for an unequivocal specification of "high", it is also the case that

rationale such as "a reliability of .70 was sufficient for exploratory

purposes" is unacceptable because a reliability of .70 may result in

serious attenuation of parameter solutions or estimates. Furthermore,

attenuation in parameter solutions and estimates is only one of many

possibilities when a functional equation involves multiple causal

variables, each of which involves random measurement error (e.g., the bias

may be upward and signs may be reversed-cf. Blalock, Wells, & Carter,

1970; Kenny, 1979). In this regard, Kenny (1979) suggested that in the

multivariate case the bias due to measurement error may be negligible if

(a) reliabilities are high, (b) the (true) causal effects are snall,

and/or (c) the causal variables have low intercorrelations. We suggest

that researchers focus their attention on option (a).



68

The implication of the need for rigorous standards regarding

operationalization of manifest variables is that the use of confirmatory

procedures may be restricted for manifest variable designs in psychology.

We illustrate this point in the introduction of Section 4 (latent

variables) by demonstrating the bias in estimates of structural paraneters

resulting from random measurement errors in observed variables. In

Section 4 we also demonstrate how one can proceed with confirmatory

analysis given some randan measurement error in manifest variables and

certain types of nonrandan measurement errors (e.g., presence of method

variance, serially correlated measurement errors) if one uses a latent

variable form of analysis. However, for the present we will introduce

and overview the logic of confirmation and disconfirmation using manifest

variable designs.

Condition 9: &npirical Confirmation of Predictions I: Enpirical Support for

Functional Equations

If Conditions 1 through 7 are considered reasonably satisfied, and if

manifest variables are reasonably accurate representations of the

constructs they are designed to measure, then it is possible to proceed

with confirmatory analysis using manifest variables. The objective of

such an analysis is to confirm or disconfirm a structural model. This is

the process that is generally thought of as confirmatory analysis, where

confirmation implies that a structural model, and the functional

relations and equations representing the model, are useful for making

causal inferences to explain how variables occur and why they covary

(excluding purely exogenous variables). Disconfirmation implies that
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the structural model (functional relations and equations) are not useful

in this regard. Given linear functional equations, the logical foundation

of confirmation and disconfirmation is often viewed in terms of the

following three principles.

1. The functional relations and equations relating effects to

causes in a linear structural model may be used to derive

a set of predictions regarding the observed correlations

(or variances-covariances) among the manifest variables.

2. A structural model is confirmed if the predictions regarding

correlations (variances-covariances) among manifest variables

are consistent with the observed (i.e., empirically derived)

correlations (variances-covariances) among manifest variables.

A structural model is disconfirmed if predictions and

observed correlations (variances-covariances) are inconsistent.

3. Confirmation of predictions implies corroborative support for

the structural model represented by the functional relations

and equations. Disconfirmation of predictions implies that one

or more components of the structural model (functional relations

and equations) is false, in which case it is concluded that the

structural model as proposed originally is invalid.

The present condition and Condition 10 focus on Principles 1 and 2. It

is shown that predictions regarding correlations (variances- covariances)

among manifest variables, and confirmation/disconfirmation of these

predictions, can be addressed empirically by testing predictions regarding

the magnitudes of estimates of structural parameters. In the present

condition, we consider tests of whether or not structural parameters that are
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predicted by the structural model to be nonzero are different from zero. In

Condition 10 we discuss tests of whether or not structural parameters that

are predicted by the structural model to be equal to zero are zero, or

approximately zero. Wnen combined, these two sets of tests furnish the

information needed to ascertain whether a model has been confirmed or

d isconf irmed.

Principle 3 is considered in Section 3 of this paper, where we address

the roles of empirical confirmation and disconfirmation in causal inference.

The discussion of Condition 9 is organized as follows: (a) tests of

predictions regarding structural parameters associated with causes, which

includes an overview of identification, ordinary least squares (OLS)

estimation, and tests of significance for a recursive model; (b) the use

of standardized versus unstandardized manifest variables, where advantages

and disadvantages of the path analytic approach to confirmatory analysis

are reviewed; and (c) a specification error of major interest to

psychologists, namely unmeasured re'evant cases in equations that are

presumed to be self-contained functional equations.

Tests of Predictions Regarding Structural Parameters Associated with Causes

Stated simply, inclusion of a variable as a cause in a functional

equation indicates that the structural parameter associated with that

variable is hypothesized to be different from zero. It follows that if

(a) we employ a statistical estimating equation to represent the

functional equation, then (b) the estimates of the structural parameters

provided by the statistical equation are predicted to be different from

zero. Given reasonable satisfaction of Conditions 1 through 8, the
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predictions regarding estimated structural parameters can be tested in

random samples from well-defined (i.e., boundaries specified) populations

by estimating statistically the values of structural parameters and

conducting tests of significance on the estimates. If the estimate of a

structural parameter is signicantly different from zero, then the

prediction is regarded as confirmed, which implies that the functional

equation is consistent with empirical data (i.e., the statistical

estimating equation). If one or more estimates is not significantly

different from zero, then the prediction(s) is disconfirmed, implying that

the functional equation is not consistent with the data.

The preceding points are illustrated usingthe structural model shown

in Figure 2.7. Of initial importance is that all (manifest) variables in

Figure 2.7 are represented by an x. This notation is adopted to

simplify subscripting parameters and statistics in equations. The subscripts

for the x's denote causal order, the B.. (i>1) are structural

parameters, and the d are disturbance terms. The structural model is

"fully recursive", which means that (a) the model includes only one exogenous

variable (Xl), (b) the direction of all causal connections is asymmetric,

and (c) each event higher in the causal order is a function of all events

lower in the causal order, plus a disturbance term (e.g., 14 = f(--l'

A2,1_3dd) ] . For illustrative purposes, we presume that empirical data

are to be collected on a cross-sectional basis on a random sample of subjects

from a well-defined population.

Insert Figure 2.7 about here
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The linear functional equations, in deviation form, are shown in

Figure 2.7 (Eqs. 2.7a through 2.7c). In confirmatory analysis, a

functional equation is often referred to as a structural equation. This

suggests that the structure of causal connections among variables is

represented by the equations. We will, however, continue to use the term

"functional equation". The objective now is to estimate the values of the

structural parameters in Eqs. 2.7a through 2.7c.

Identification. The first step in this process is to ascertain

whether each of the functional equations is identified. As discussed

earlier, this concerns the question of whether sufficient information is

available to obtain unique mathematical solutions of the structural

parameters. For recursive, manifest variable models, a functional

equation will be identified (i.e., sufficient information is available) if

(a) the causes included explicitly in the functional equation are

uncorrelated with the disturbance term of that equation; and (b) all such

causes have a unique, direct effect on the endogenous variable and are not

linearly dependent on other causes included explicitly in the equation.
4

We will focus here on the assumption that causes are uncorrelated with

disturbances.

For the purpose of describing identification, we will regard the

manifest variables in Eqs. 2.7a through 2.7c as hypothetical randan

variables defined on a hypothetical population. Now, in the functional

equation for x2 (Eq. 2.7a), it is (theoretically) possible to solve for

(note, not estimate) the structural parameter B21 directly by (a)

multiplying through Eq. 2.7a by X1 , (b) taking expectations on the

resulting equation, and, if justified, (c) solving for B21 algebraically
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(cf. Duncan, 1975). The first two steps are as follows:

Functional equation for x2 :

x2 = x +d 2  (2.12)
-2 21-1 +-q2

multiplying through the equation by Xl

Taking expectations:

(x2 B1 + d_2x )

-B 2 + (2.13)

S21 - -2 1-1 =d21
2.

where o2 and _2 are covariances and 2 is a variance.

Equation 2.13 is often referred to as a "normal equation".

The values assumed by the random variables and 2, and therefore

21 and 1 may be regarded as "known" because the random variables

can be operationalized as manifest variables. It is not possible to regard

d2 as known, one obvious reason being that the randon shock component

of disturbances, which may be the only component, is by definition

unmeasurable. Thus, 2, and therefore __2, are considered "unknowns".
-2-

B21 is also unknown; we must solve for its Value based on the known
2.

values of a21 and g in Eq. 2.13. This is not possible at the

present time because Eq. 2.13 has two unknowns (i.e., B21 and 2d I
-2-

- or, one equation and two unknowns). This is an illustration of

underidentification, which means that sufficient information is not

available to obtain a unique mathematical solution for B2 1 . However, if
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we can assume that x1  is unrelated to d , then a 0 and the

2 -7- 01 n h
=2-=

equation is identified. That is, we now have one unknown-and one equation,
and 21 easily solved for: B =_o-1/0_ 2  As shown in

is2 e 21 -m 1 -m

Condition 5, a = 0 if d2  is comprised by random shocks
___ 1

exclusively. (or by random shocks and nonrelevant variables).

This logic may be generalized directly to the functional equations

for 3 and 4 (Eqs. 2.7b and 2.7c) . Equation 2.7b is identified if

= 2 = 0, and Sq. 2.7c is identified if or

a = 0. Furthermore, algebraic derivation will show that lack of

covariation between the causes in a functional equation and the disturbance of

that equation implies that the disturbance terms are themselves unrelated

(Duncan, 1975).

Lack of relationship among the disturbances of different equations

implies that the systen of equations is identified. This is an important

consideration if all structural parameters from all equations are to be

estimated simultaneously. On the other hand, if the structural parameters

for each functional equation are to be estimated separately, then it is

possible to estimate parameters for the identified equations but not for

the underidentified equations. Finally, note that no assumption is

required for covariations of the form a ' where i > J. For
--

example, 24 may be related to d2  (od4) without affecting

identification.

Solutions and Estimates of Structural Parameters. Requirements for

identification vary as a function of the type of structural model (cf.

Fisher, 1966). We will return to the critical assumption that causes
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included explicitly in a functional equation are unrelated to the

disturbance of that equation (and by implication all disturbances later in

the causal order). For the present, we regard this assumption as

satisfied. Thus, functional equations 2.7a through 2.7c are considered

identified. As shown above, this implies that the solution for B21 is

_ 2/ Solutions for the structural parameters in Eqs. 2.7b and

2.7c may be determined in a manner similar to that used to sulve for B21.

For example, it is possible to solve for B31 and B32  in Eq. 2.7b

by (a) multiplying through Eq. 2.7b by x1 and then x2 , thus

providing two equations; and (b) taking expectations on each of these

equations. The resulting normal equations are:

1-12 (2.14)
-31 -t~3l -3221 -!:l322

232 = B3 11 21 + B 3221 +o 9d3 (2.15)
__ _-_1 _1 -32_2 3_g.s

_dl (Eq. 2.14) and __32 (Eq. 2.15) are assumed to be zero.
=3:---3--

Terefore, we have to unknowns (B3 1 and B32) and two equations, and

it is possible to solve for B31 and B32 using determinants. The

resulting solutions are:

3 = (_31_22 - 21S32)/(_21 2 - 212) (2.16)

32 ( 232912 - 12S3 1)/(. l I2_2 - S21 2) (2.17)

Inspection of Eqs. 2.16 and 2.17 demonstrates that the solutions for

B3 and B32 are the same as those that would have been obtained if we had

simply used Ordinary Least Squares (OLS) estimation to solve for B31 and

_%32. hat is, B 31 and B32 have the form of unstandardized

H!
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regression weights. The same is true for B2 1 in Sq. 2.7a;

S2l 2 is the solution for unstandardized regression weight in a

bivariate relation. Finally if qi = 2 = a' = 0, then B4 ,
-4-1 -4- ;4 -4'

-42' and B43 in Eq. 2.7c have the form of unstandardized regression

weights and may be solved by using 01S.

7b summarize, given a recursive, cross-sectional design, if the

causes in a functional equation are unrelated to the disturbance of that

equation, then OLS may be used to solve for the values of the structural

parameters (note that OLS is applied separately to each equation) . 7his

conclusion was predicated on hypothetical random variables in a

hypothetical population, but extends to operationalized designs, although

one must be mindful of the fact that disturbances can not be measured

directly. 7b illustrate, the causes and effects in functional equations

2.7a through 2.7c may be replaced with manifest variables defined on a

populaticn(with boundaries specified) if the manifest variables satisfy

the assumptions discussed in Condition 8. It is also possible to employ

manifest variables in the algebra used to derive the variance and

covariances shown in Eqs. 2.13 through 2.17, including covariances

between causes and disturbances and solutions of the structural

parameters. However, the covariances involving disturbances involve

relations between manifest variables and hypothetical variables that

cannot be measured directly. It follows, then, that these covariances can

not be solved for, nor estimated, in operationalized designs. In other

words, assumptions regarding covariances between causes and disturbances

are a theoretical concern. As shown shortly, an erroneous assumption

that a covariance between a manifest variable and a disturbance is zero
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has serious consequences for estimates of structural parameters.

Let us continue the illustration with the assumptions that the

functional equations are operationalized in a well-defined population of

subjects, with manifest variables that satisfy reasonably Condition 8 and

are unrelated to disturbances. An OLS regression equation may now be

.1ployed to represent a functional equation, where the values of the

unstandardized regression weights represent the values of the structural

parameters. Under these assumptions, the OLS error (residual) term

represents accurately the disturbance term. However, this does not

suggest that one may relate the maiifest variables with the OLS error,

designated e., to test the assumption that the manifest variables in a

functional equation are unrelated to the disturbance of that equation. By

definition, an e. will be unrelated to all manifest variables included

in an OLS equation. This point may appear trivial, but some researchers

have in fact calculated covariances (correlations) between manifest

variables anu e.'s to test the assumption that causes are unrelated to

disturbances. Still others have defined a disturbance as a form of

statistical residual (e.g., an OLS error term) , which is misleading. Tb

reiterate, a disturbance cannot be measured directly, and the covariation

(correlation) between a disturbance and manifest variables in a particular

equation cannot be solved for, or estimated, directly. A statistical

residual, such as an e in OLS, represents (estimates) a disturbance

only in the condition that the manifest variables in an equation are

theoretically unrelated to the disturbance of that equation.

Hopefully, we have made the point that while a functional equation

involving manifest variables and an OLS equation involving manifest
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variables may assume identical forms, it is only in the functional

equation that covariation between manifest variables and a disturbance has

meaning, and it is only when all such covariations are theoretically

zero that an OLS equation truly represents a functional equation. Let us

now proceed to the question of estimation given that the OLS population

equation is an accurate representation of the functional equation. This

is a simple step because it is identical to the requirements for

estimating population unstandardized regression weights based on the

unstandardized regression weights derived in a sample. In general, the

unstandardized regression weights derived in a sample will be unbiased

estimates of population unstandardized weights, and therefore the

structural parameters, if the sample was obtained randomly from a

well-defined population in which errors (and by implication disturbances)

have a mean nf zero and a constant variance (i.e., homoscedasticity). (We

are, of course, also assuming linearity, interval scales, and essentially

perfect reliability) .

Let us presume that the assumptions above have been reasonably

satisfied. An illustration of the empirical estimation of structural

parameters by means of a structural equation analysis on a recursive model

is then straightforward. Consider, as an example, the hypothetical sample

data shown in Figure 2.8. Figure 2.8a is a replication of the structural

model in Figure 2.7, only here we have placed variances of the variables

in parantheses below the variables and covariances in parentheses above

the arrows connecting the variables. The sample OLS regression equations

(Eqs. 2.8a through 2.8c) in Figure 2.8b were used to estimate the values

of the structural parameters in the structural equations in Figure 2.7.



79

That is, the unstandardized regression weights in Enls. 2.8a through 2.8c

(i.e., the B..) were used as estimates of the B.. in Eqs. 2.7a

through 2.7b. A separate OLS analysis was conducted for each of the OLS

regression equations. The results of the analyses are shown in Figure

2.8c. Given reasonable satisfaction of Conditions 1 through 8 and the

assuznptions for OLS analysis, the B.. are unbiased estimates of the-ai

Insert Figure 2.8 about here

Given unbiased estimates, we are now in a position to confirm or

disconfirm the predictions that estimates of structural parameters

associated with causes in functional equations should be significantly

different from zero. This is accomplished by employing the conventional

significance test for unstandardized regression weights. (This test

requires the additional assumption that the population OLS error term (and

the disturbance) is distributed normally.] If all estimated structural

parameters for a particular functional equation are significant, then all

predictions are confirmed in regard to our first test of confirmation. If

all predictions in all equations are confirmed, then the structural model

is regarded as being consistent with the data, again in regard to the

first test of confirmation. For example, given a large sample, the

B.. in Figure 2.8c would be significant, which suggests that the

structural model in Figure 2.7 is confirmed in regard to the first test of

confirmation. However, if one or more estimated structural parameters is

not significant, then not only are the predictions associated with those
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estimates disconfirmed, but the structural model is regarded as

inconsistent with the data.

In sum, simple multiple regression may be used to test predictions

that estimated structural parameters (unstandardized regression weights)

associated with causes are significant. If the estimated parameters are

significant in each and every statistical (OLS) equation, then, based on

the first test of confirmation/disconfirmation, a structural model is

confirmed. Confirmation implies that the structural model is consistent

with the data. If one or more estimated structural parameters is not

significant, then the model is disconfirmed, implying that the model is

not consistent with the data. Now, given the consensus that confirmatory

analysis should be conducted on large samples, it follows that the

significance tests for estimated structural parameters are powerful.

Consequently, unstandardized regression weights of rather trivial

magnitudes are likely to be significant. his suggests that the present

test is not likely to disconfirm many predictions, or, it is weighted in

favor of confirming predictions. As we shall see in Condition 10,

precisely the opposite problem occurs in our second test of

confi rmation/disconfi rmation.

Theory trimming. It is, of course, possible for unstandardized

regression weights to be nonsignificant, even with large samples. How

serious is this source of disconfirmation? The answer to this question

depends on the model and the salience of the causal hypothesis underlying

the structural parameter. For example, in Figures 2.7 and 2.8, it may be

critical to the theory underlying the model that the estimate of B43,

namely -4 be significant. Consequently, a nonsignificant B

...... .. ... . ... .. ..... . . -=.... . . .. ...4 31 "'1- :i 1 ... . .. H . .. .. . ......" nilF.. . ..- : . .
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or a significant B43 of trivial magnitude, may be a serious blow. On

the other hand, a nonsignificant, or significant but low, B4 1 may not

be a serious theoretical blow. Thus, the particular source of

disconfirmation of predictions (i.e., the causal hypotheses involved) may

vary from rather minor to drastic. If confirmation of a prediction is of

particular importance to a model, and the prediction is disconfirmed, then

one may decide that there is little reason to proceed with additional

analyses. We recommend that they do proceed in order to test fully all of

the predictions of the model.

If the source of disconfirmation is not of major importance, then the

investigator may consider "theory trimming". Theory trimming consists of

deleting causal connections from a structural model (Heise, 1969), which

is to say deleting a cause and its associated structural parameter from a

functional equation. It is extremely important to note that theory

trimming is a form of exploratory, and not confirmatory, analysis. That

is, the investigator is now making decisions based on data, and is no

longer confirming/disconfirming a priori theory. The crucial implication

of this point is that the structural parameters for which trimming might

be indicated in this first test of confirmation/disconfirmation should

never be used to test confirmation/disconfirmation in the second test

(Condition 10). The reasoning is simple; the second test of

confirmation/disconfirmation assesses whether estimated structural

parameters that are predicted to be zero are in fact not significantly

different than zero. If, after looking at the data, one knows that an

estimated parameter is essentially zero, then a test that this same

parameter is predicted to be zero is nonsense.
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In conclusion, theory trimming of minor sources of disconfirmation is

acceptable as long as one remembers that, following trimming, one is no

longer dealing with an a priori, theoretical model. This leaves two

avenues for further analysis, specifically (1) test the trimmed model in a

new sample, or (2) do not trim prior to conducting the second test of

confirmatiorVdisconfirmation discussed in Condition 10. One may theory

trim after all analyses are conducted and interpreted, and the researcher

is proposing a revised theoretical model for future research.

Standardized versus unstandardized manifest variables

Up to now we have treated manifest variables in deviation form, one

result being that the OES estimates of structural parameters are

unstandardized regression weights. It is also possible to treat the

manifest variables in standardized form, in which case the values on the

variables are standard scores (i.e., z = (X-i_)/a) , and the variables

have a mean of zero and a standard deviation of 1.0. When the variables

are in standardized form, the structural parameters are referred to as

standardized structural parameters, or path coefficients. The estimates

of path coefficients provided by OLS are "standardized regression

weights", or beta weights. Moreover, it is customary to refer to the

structural model as a pth model, the functional equations as pth

equations, and the confirmatory analysis as a path analysis. A full

recursive path model and its corresponding set of path equations are shown

in Figure 2.9, where zis are used to designate standard scores, and

P11 (i>j) designate path coefficients. It is customary to employ the

symbol "u." to designate disturbance terms in path models and path-i
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equations.

Insert Figure 2.9 about here

There are advantages and disadvantages associated with both path

coefficients and (unstandardized) structural parameters (cf. Tukey, 1964;

Wright, 1960). The advantages of path coefficients are as follows:

(1) Algebraic and statistical manipulations are simplified.

(2) Path coefficients are based on readily interpretable

correlation coefficients.

(3) Path coefficients themselves are readily interpretable

inasmuch as all variables are based on the same metric.

(4) Path analysis provides simplified expressions for

decomposing correlations into functions of path coefficients. 5

Structural parameters typically have none of the advantages above

because the variables are based on different metrics (see Figure 2.8) and

variance-covariance matrices replace correlation matrices. However,

structural parameters have the advantage that they can be compared directly

across different populations (for the same variables) or for the same

population over time. We have chosen to illustrate the former case because

we wish to demonstrate how the subgrouping moderator approach can be

applied in confirmatory analysis. By doing so, our intention is to

discourage carrying over into confirmatory analysis the practice among some

investigators of conducting subgrouping moderator analysis on standardized

regression weights (beta-weights, correlation coefficients in the bivariate

case).
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Consider a linear bivariate model in which both variables (xI and

2 have been measured in each of two specified populations (e.g.,

males and females). The path equation in each population is z=

P21 l+ 2; the corresponding structural equation in each population

is X = A + B X + d The structural equation is presented
-2 -2 -21-1 -=l

in raw score form, where A2 is the intercept. The structural parameter

.B21 may be thought of as the slope of a regression line, where the

slope reflects the amount of change in X2 , in units of X 2, brought

about by a unit of change in X1 . This suggests that the structural

parameter reflects the concrete contribution that X makes directly

to X 2 in X2 units. If the same metrics are employed across the two

populations, then the contribution that X1 makes to X2 can be

ccmpared across the populations in an absolute sense; that is, in terms

of units of X2 .

The path coefficient P21 may also be thught of as the slope of a

regression line. However, the path coefficient is an abstract measure

of the slope because it is based on an abstract scale that varies as a

function of a ratio of standard deviation units within a particular

population. That is, P21 = !21(ax /a- ), which means that

path coefficients are unstandardized regression weights adjusted by a

ratio of the standard deviations in each population. Thus, a comparison

of path coefficients is in actuality a comparison of abstract scales, each

adjusted for population idiosyncrasies in standard deviations. This

suggests that while the concrete contribution (causal effect) indicated by

_B21 may remain invariant across populations, the path coefficients may

vary simply because the standard deviations of X and/or X2 vary

1
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across populations. Thus, the general rule is that path coefficients

should not be employed in the canparison of causal effects for different

populations, or in the comparison of causal effects in the same population

over time (cf. Blalock, 1967, 1968, 1969; Spaeth, 1975; Tukey, 1964;

Wiley & Wiley, 1971).

On the other hand, path analysis has the advantages discussed earlier.

Wien research is focused on a specific population using cross-sectional

data collected during an equilibriun-type condition, the advantages may

outweigh the disadvantages (Wright, 1960). For our purposes, the

opportunity to simplify statistical derivations is important, and thus a

path analysis paradigm is employed frequently in the remaining discussion.

Specification Error Due to an Unmeasured Relevant Cause

Specification error is a general term that refers to errors

(misspecifications) in the form of a structural model and its accompanying

functional equations, or in the operationalization of variables. In this

discussion we will demonstrate a specification error of particular concern

to psychologists, namely unmeasured relevant causes. We will also return

to the question of relations between causes and disturbances, the resulting

underidentification, and the consequences of proceeding with OELS estimation

given violation of conditions for confirmatory analysis.

In the presentation of Condition 5, we demonstrated that an unmeasured

relevant cause would result in a theoretical covariation between causes

included explicitly in a functional equation and the disturbance term of

that equation (see Figure 2.4 and Eq. 2.11). We also demonstrated that

covariation between a measured cause and a disturbance implies that a

functional equation is not self-contained. Finally, we noted that

I.|
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psychologists have paid scant attention to the need for self-contained

functional equations, although increased attention is not likely to

solve this problem completely because all relevant causes of an effect are

unlikely to be known. Nevertheless, it is possible to reduce substantially

the influence of unmeasured relevant causes, or what we will refer to as

the "unmeasured variables problem", by (a) recognizing that the problen

exists, (b) judging whether sufficient information has accumulated to

justify a confirmatory analysis, and (c) including all known relevant

causes in the appropriate functional equations. Given (a) and assuming an

affirmative answer to (b) , the operational question is (c) , namely have

known relevant causes been omitted from one or more functional equations.

As we shall see, this question consists of postulating the degree to which

an unmeasured variables problem is believed to lead to bias in estimates of

structural parameters.

Within psychology, a primary cause of an unmeasured variables problem

appears to be the failure to recognize that "focused" theoretical models

are not amenable to confirmatory analysis. To illustrate, it is frequently

the case that psychological models are designed around sets of focused

causal variables, where by "focused" we mean causes that are of interest to

an investigator(s) . Leader behaviors are one example. In contrast, the

endogenous variables are typically less focused, and include such things as

attrition, overall satisfaction, and performance. one of the certain ways

to create a serious unmeasured variables problem is to analyze focused

causal variables, such as leader behaviors, in relation to a global

endogenous variable, such as overall job satisfaction. The latter includes

a plethora of additional causal influences, such as pay, working
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conditions, opportunities for advancement, job stability, and so forth.

By way of simple illustration, Figure 2.10a displays a self-contained

path model in which the manifest exogenous variable z is a cause of

the two endogenous variables, z2 and z3 . z2 is also a cause of z3.

The u" (u2 and u3 ) are disturbance terms, and are assumed to be

comprised exclusively by random shocks (RS). (It is assumed that, with the

exception of an unmeasured variables problem in Figure 2.10b, all conditions

for confirmatory analysis have been satisfied.). Population path equations,

expectations, and normal equations for Model 2.10a are shown in the upper

portion of Figure 2.11. Note that the functional equations are identified;

the normal equation for z2 (Eq. 2.11a) has one equation and one unknown

(i.e., p21 = -E21), and the normal equations for z3 (Eqs. 2.11b and

2.11c) have two unknowns in two equations. The correlations are assumed to

be known, and are indicated by "r..". [These are population correlations;

the conventional p is not used because it is easy to confuse p

(population correlation) with p (path coefficient) .]

Insert Figures 2.10 and 2.11 about here

Figure 2.10b illustrates a condition in which the u. are not

comprised by RS components exclusively. Rather, an unmeasured causal

variable, a, is present in both u terms. The variable a is

regarded as a relevant cause of both z and z3, which includes

relationships with z1 (indicated by the curved, double-headed arrows

from a to z1) . Moreover, because a appears in both disturbance

terms (i.e., the curved arrow between a for z2 and a for z3), the
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disturbances are also correlated. (The a's need not be the same for this

to occur; different but correlated a's for z and z also lead to

correlated disturbances.)

Path equations, expectations, and normal equations for Figure 2.10b

are shown in the lower portion of Figure 2.11. As shown in the normal

equation for z2 (Eq. 2.11d) and the normal equations for z3 (Eqs.

2.1le and 2.11f), the equations are underidentified because the unmeasured

a covaries with both z and z2 (i.e., Eq. 2.11d has two

unknowns, and Eqs. 2.1le and 2.11f contain four unknowns--the relations

between a and the z's are represented as covariances because if d. =

RS + a., and if d. is in standardized form, then a. cannot be in

standardized form) . Consequently, OLS can not be used to solve for the

path coefficients in the population or to estimate the coefficients in a

sample.

Now, consider the case that the path model displayed in Figure 2.10b

is operable, but that an investigator assunes that u2 and u3 are

carprised by RS components exclusively. It is possible to use OLS to

solve for the path coefficients; however, the path coefficients will be

biased. To illustrate the bias, a false model (a is not included in the

path equation) is campared to a true model (a is included in the path

equation) in order to determine the consequences of employing the false

model to solve for the path coefficient(s) (Duncan, 1975; James, 1980). A

camparison of the false and true models for the z2 equation is

presented in Figure 2.12. The "true" path coefficients are designated by

pr imes (e.g., -2l and )

2aI
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Insert Figure 2.12 about here

As shown in Eq. 2.12a, P21 in the false model differs from in

the true model by a factor of j2' ThIis implies that P21 will be

biased if both p a and ra are greater than zero. In other words, if the

unmeasured a is (a) a cause of z 2 and (b) correlated with zl, then

P21 will be biased. If we disregard suppressors, then the bias will result

in a P21 that is too large; this is a direct result of failure to control for

the effects of a in solving for 221 in the false model. The ramification

of this bias is that causal influence that rightfully belongs to a is

instead attributed to z I .

Let us now address the question of the degree to which p2 1 may be

biased. If either p' or r is zero, or approximately zero, then little
2a -al1

or no bias will exist in p21. This suggests that bias will not occur if an

unmeasured variable is in fact a cause of the endogenous variable but is

unrelated to the measured causes of that same variable. (Note that the

unmeasured cause is not a relevant cause if it is unrelated to measured

causes.) Consequently, one need not assune that all major causes of an

endogenous variable have been measured. Rather, an unmeasured cause must

also be related to a measured cause before bias will ensue.

Ve must also entertain the fact that there are degrees of causation;

the magnitude of p2 might be anywhere on a continuum from low, to

moderate, to high. Similarly, the magnitude of ral may vary from zero,

or approximately so, to low, moderate, or high. hus, the product term

can assume many values, only some of wich result in serious
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bias of 221" From a pragmatic standpoint, we shall assume that the

permutations most likely to lead to serious bias are high-high,

moderate-high, high-moderate, and moderate-moderate. Ybreover, an

unmeasured variable will not result in bias if this variable is highly

correlated with a measured cause. This point is easily demonstrated in the

"true" equation for z2, which is presented below with appropriate

controls indicated for the path coefficients.

z = P + P2a.la + u2

The path coefficient for a is theoretically equal to, or

approximately equal to, zero if a and z are correlated highly (e.g.,

.95). Consequently, there is no reason to include a in the z 2 equation

because it is essentially redundant with, or linearly dependent on, z I .

Note also that inclusion of a in the z 2 equation would result in a

multicollinearity problem if OLS were used to solve for the path coefficients

Thus, with a unmeasured, essentially no bias will ensue for the -p21 path

coefficient (i.e., p.ir = 0 because _2a- = 0). Here again, a-al 2a

would not oe an unmeasured relevant cause if it is linearly dependent on

the causes already included in an equation.

In sum, an Lnmeasured variable must be a relevant cause before it will

lead to bias in the solutions (estimates) of path coefficients for measured

causes. In particular, it must have at least a moderate effect on the

endogenous variable after controls have been effected for measured causes,

and it must have at least a moderate correlation with one or more measured

causes without being linearly dependent on the measured causes. The
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implication of these points is that if an unmeasured causal variable is not

a relevant cause, then one does not have a serious unmeasured variables

problem.

If, however, the unmeasured variable is a relevant cause, then as

shown in Figure 2.12, bias will ensue in the solution (estimate) of a path

coefficient(s). This point is illustrated empirically in Figure 2.13.

Figure 2.13a is a self-contained or true model with relevant causes z I and

a (in standardized form) in the path equation for z2 . Hypothetical

population correlations associated with the relation between the two

exogenous variables (i.e., r = .50) and the causal connections are

presented in parentheses. Solutions for the path coefficients in the true

model, designated by a prime, were obtained by OLS; the path coefficients (beta

weights) were: p2 1 = .50 and p2' = .40. A false model with a

unmeasured is shown in Figure 2.13b. The OLS solution for 221 is .70, or

simply r 2 1 . The bias in .2l resulting from the failure to include a

in the path equation for z2 is shown in Figure 2.13c. The bias is equal to

P-2 1 - .221 = .70 - .50 = .20. This is equivalent to 22a- =

(.40)(.50) = .20.

Insert Figure 2.13 about here

The discussion above transfers directly to more complex equations

involving multiple causes, although, given an unmeasured relevant cause,

the direction of bias may be either positive or negative. Nevertheless,

the unmeasured cause must be a relevant cause before serious bias will
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ensue in the solutions (estimates) of path coefficients. We will forego a

statistical demonstration of this point. Rather, we shall proceed to

summarize the salient points from the preceding discussion in the form of

"decision steps". The decision steps, presented by James (1980), are

designed to assist investigators in making a judgment of whether an

unmeasured variables problem is of sufficient seriousness to preclude the

use of path analysis (or other forms of confirmatory analysis) . The

decision steps are prefaced on the logic that while it is unrealistic to

expect obviation of the unmeasured variables problem in research, it is

possible to attempt to minimize bias in path coefficients (structural

parameters) to the point that the bias is within "tolerable limits" for

research purposes. It is also prefaced on the logic that investigators

will exercise "good judgment" in deciding initially that enough information

has accumulated to justify confirmatory analysis, which is a pragmatic but

defensible reason for focusing on known causes. (We address this issue

further in Section 3.)

The decision steps are presented in Figure 2.14. The steps are

written from the standpoint of designing a cross-sectional, manifest

variable analysis involving recursive causal connections, although the

rationale generally transfers to other types of designs. Furthermore, the

steps apply to one endogenous variable, and should be applied to each

endogenous variable in a structural model.

Insert Figure 2.14 about here

The decision steps, while subjective, are the most help that we can
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give reserchers wiho are using cross-sectional designs with manifest (or

latent) variables. However, with longitudinal designs, it is possible to

minimize statistically the bias in estimates of structural parameters

resulting from unmeasured relevant causes. Of particular importance is

time series analysis combined with generalized differencing and generalized

least squares (cf. James & Singh, 1978; Johnston, 1972; Ostrom, 1978;

Pindy k & Rubinfeld, 1976). The logic of these methods is that if a

disturbance term is estimated for the same endogenous variable(s) at each

of several times of measurement, it is possible to estimate relationships

among the disturbance terms. If the disturbance terms are comprised by

randam shocks exclusively, then these relationships will be zero, or

approximately so. If, however, unmeasured causes (relevant and nonrelevant)

are contained in the estimated disturbance terms, then it follows that the

unmeasured causes will correlate with themselves over time because they

are, by definition, stable. These correlations are referred to as

autocorrelations, or serial correlations, among the disturbance terms.

Statistical procedures can be used to remove the serial correlation from

the estimated disturbance terms, and, in the process, obviate relationships

between measured causes and disturbances. The result is that consistent

estimates of structural parameters may be obtained even though one may have

a serious unmeasured variables problem.

Summary. Considerable territory has been covered in presenting

Condition 9, and there is more to come in the discussion of latent

variables. Nevertheless, with a minimum of statistical development we have

attempted to make three points. First, predictions regarding estimates of

structural parameters (standardized or unstandardized) must be confirmed if
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a structural model is to be consistent with empirical data. This is the

first test of confirmation/dlsconfirmation. Second, erroneous conclusions

may be drawn regarding confirmation/disconfirmation of predictions if the

estimates of structural parameters are biased. Third, the degree of bias

in estimates of structural parameters is a function of specification errors

brought about by the failure to satisfy reasonably one or more of the

preceding eight conditions. An illustration was provided for unmeasured

relevant causes (a violation of the self-contaignent condition). An

illustration of the effects of random measurement error in manifest

variables is presented in Section 4. Illustrations of the effects of

violations of other conditions, such as specification errors in causal

order, causal direction, causal interval, and operationalization of

variables, are furnished in the confirmatory literature (cf. Billings &

Wroten, 1978; Bohrnstedt & Carter, 1971; Cook & Campbell, 1976; Darlington

& om, 1972; Deegan, 1974; Goldberger & Duncan, 1973; Griffin, 1977; Heise,

1969; Werts & Linn, 1971; Young, 1977; Cliff, 1980).

Condition 10: Epirical Confirmation of Predictions II: Fit Between

Structural tbdel and Empirical Data

The estimation of structural parameters in Condition 9 is based

(conditional) on the assumption that the structural model, as proposed

originally, is valid. It is, however, quite possible for all of the

estimated parameters to be significantly different from zero when the

structural model is invalid. 7b illustrate, consider the two path models

and their accampanying path equations in Figure 2.15. Model 2.15a predicts

that similarity of interests (z1 ) leads to felt attraction (z 2 ), which

in turn leeds to a higher probability to form a friendship (z 3 ). This is a
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simple chain model in which a direct Zl z 3 effect is not hypothesized.

Rather, the effect of z1 on z3 is indirect, which is to say that the

effect of similarity of interests on friendship is mediated by the

intervening process of experienced attraction. Model 2.15b predicts that

affects both z 2 and z3 directly, where both z1 and z2

are relevant causes of z3  (z1  also affects z3 indirectly through

K2 ) . If Model 2.15a were tested in Condition 9, when in fact Model 2.15b

is the true model, then the estimate of the path coefficient for z2 in Eq.

2.15b (i.e., P-32) would be biased. This would occur even though estimates

of .231 in Eq. 2.15a and P32 in Eq. 2.15b were significant. The

rationale here is that failure to include a measured relevant cause in a

functional equation (i.e., z I in Eq. 2.15b) has the same implications as

failure to include an unmeasured relevant cause (i.e., lack of self- containment

and biased parameter estimates). However, unlike unmeasured relevant causes,

it is possible to test empirically for direct causal effects for measured

causes. This is a form of goodness of fit test, and brings us to the second

test of confirmation/disconfirmation.

Insert Figure 2.15 about here

The key condition required for the second test of confirmation/

disconfirmation is that no direct causal connection is hypothesized

between at least one causal variable and an endogenous variable in the

original structural model. This is analogous to hypothesizing that the

value of the structural parameter relating these two variables is zero.
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For example, in Figure 2.15a, there is no direct arrow between zI and

z3; this means that £31 is hypothesized to be equal to zero. Thus, the

path equation for z3 in Figure 2.15a (Eq. 2.15b) may be thought of as

R3  (P3l=0)Zl + 132;2 + u3 = £32z + 3. It cannotbe

emphasized strongly enough that setting structural parameters equal to zero

must be based on theoretical grounds (i.e., accompanied by a theoretical

rationale) and proposed as part of the original structural model.

7b continue the illustration, the hypothesis that £31 = 0 in Figure

2.15a and Eq. 2.15b leads directly to the prediction that the OLS estimate of

£31 should not differ significantly from zero. This hypothesis can be

tested by estimating £31 in Eq. 2.15d, which is a test of the goodness of

fit of model 2.15a. If the estimate of P31 is significant, then model

2.15a is disconfirmed and model 2.15b is a viable (but untestable, as

explained below) possibility. This form of test is referred to as the

omitted parameter test of goodness of fit, and is described later in

this section. A test that accomplishes essentially the same purpose, but

in a more subtle manner, is to deonstrate that the correlation between z

and z is equal to the product of the paths that link, indirectly, z1

to z3, orr = In Figure 2.15a. This is referred to as
3P -=31 £21232' nFgre21a

the reproduced correlation test. The reproduced correlation test, or

reproduced variance-covariance test if variables are not standardized, is

prominent in theoretical discussions of confirmatory analysis, and is

described prior to the omitted parameter test. It is noteworthy that the

reproduced correlation (variance-covariance) test is not often used in

manifest variable designs because significance tests are not available if

OLS is used to estimate structural parameters (Kenny, 1979). On the other

- 1
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hand, it is, at the present time, the method of choice in latent variable

analysis, where significance tests do exist.

The objectives of this section are (a) to describe the reproduced

correlation test and the omitted parameter test, (b) to demonstrate the

relations between the tests, and (c) to combine the two tests of

confirmation/disconfirmation (i.e., Condition 9 and Condition 10). Path

models based on a cross-sectional design are used to illustrate the

process. Initial derivations are based on population data, although the

processes are the same for the sample data. We assume that Conditions 1

through 8 and the assumptions required for OLS have been resonably

satisfied.

Reproduced Correlation Test

We begin with the path model shown in Figure 2.16 (which is the same

as Figure 2.9). The key to the reproduced correlation test is to decompose

correlations among variables in a structural model into functions of path

coefficients and, if necessary, unanalyzed correlations among exogenous

variables (the latter case is not treated in our examples). Aside from the

correlation of a variable with itself, there are six population correlations

associated with Figure 2.16; namely r 2 1 , 131 , L32 , -41 -42' an

43 (the order of subscripts reflects causal priorities, although this is

arbitrary). The decomposition may be accomplished by the long method using

expectations (cf. Duncan, 1975) or by the short method using the following

equation (Namboodiri et al., 1975):
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r r (2.18)-zl k -tt

i represents the endogenous variable (i > k,j), j refers to the

causal variable, and k begins with i-I and ranges down to 1 (i.e., z I ) .

The short method is employed below, where correlations of the form r..

(k =) are deleted because they are equal to 1.0.

Insert Figure 2.16 about Here

Direct application of Eq. 2.18 provides:

-21 = P21 (2.19)

_131 - P32E21 + -31 (2.20)

-32 = £32 + -231r12 (2.21)

141 £43-31 + P4-21 + P41 (2.22)

142 2 4332 + £42 + -41112 (2.23)

143 243 + 24223 + 241l 1 3  
(2.24)

Eqs. 2.19 through 2.24 do not represent a full decomposition; they are

the normal equations used to solve for the path coefficients in Eqs. 2.16a
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through 2.16c in Figure 2.16. Dotted lines separate the normal equations

associated with each path equation. As discussed in regard to

identification in Condition 9, it is possible to compute the six

correlations directly from the data and thus the coLrelations are "known

values". There are also six unknown path coefficients. When the number of

known values (normal equations) for each path equation is equal to the

number of unknown values, each path equation is referred to as just

identified or exactly identified. If all equations are just identified,

then the p model is said to be just identified (exactly identified).

This means that one has a sufficient number of knowns (six correlations) to

estimate the number of unknowns (six path coefficients) in the path model.

In just identified models, all of the knowi information is employed to

calculate the unknown path coefficients.

Assuming that OLS has justifiably been used to solve for the path

coefficients (i.e., the p.- and population OLS beta-weights are

equivalent), we can now fully decompose the correlations by replacing

the correlations on the right side of EBs. 2.19 through 2.24 with their

decompositions from earlier equations. For example, r 2 1 in Eq. 2.20 and

r12 in Eq. 2.21 are equal to [£21 (Eq. 2.19). Applying this process

to the remaining equations results in the following set of decomposed

correlations.

1 2 1 = 221 (2.25)

r1 = 2321 + _31 (2.26)

132= £ 32 + -231221 (2.27)
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.41= £432-32221 + .243P231 + -242P-21 + -241 (2.28)

42= -243P32 + -243231221 + 242 + -241P21 (2.29)

2:43 = 3 + -242P32 + £42231221 + 241232221 + 241P31 (2.30)

The objective of these "decomposition equations" is to see if one can

reproduce the correlations with functions of path coefficients. This is

clearly circular for these equations. That is, if all the known

information (correlations) is used to solve for the unknown information

(path coefficients) in the normal equations (Eqs. 2.19 through 2.24), then

it should be possible to reverse the process and reproduce the correlations

exactly by functions of the path coefficients. This is precisely the case;

Eqs. 2.25 through 2.30 will reproduce exactly the original six

correlations used to solve for the path coefficients in Eqs. 2.19 through

2.24. Thus, in just identified models, goodness of fit tests are

inappropriate inasmuch as solutions of path coefficients and reproduction

of correlations are circular or mirror reflections of the same statistical

process.

It is possible to break out of this circular process by omitting one

or more causal connections from the path model and path equations. This is

accamplished by assuming a priori that at least one path coefficient is

equal to zero; that is, a z. does not cause a zi (i > j) directly.

For example, in Figure 2.16, suppose it is assumed that z 3 does not

cause z directly. Matheatically this is equivalent to assuming that

P-43 = 0. The new path equation for 4 is now

L~. __
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-A = £41zi + R42-2 + ! (2.31)

The effects of this assumption may be demonstrated with the normal

equations (cf. Duncan, 1975), although it is straightforward to deal

directly with the decamposition equations. 7b see the results of the

assumption that 243 = 0, we will onit all terms in Eqs. 2.25 through

2.30 that involve P The terms to be omitted have a line crossed

through them.

121 P 21  (2.32)

-31= P32221 + - 3 1  (2.33)

132 = P32 + P31221 (2.34)

+2 i + £42221 + £41(2.35)

~2* ~(2.36)

r43" -* + -242P32 + J42231221 + £41232221 + P41P31 (2.37)

Of initial importance is the fact that there are still six known

correlations. However, only five unknowns now exist (i.e., £43 is

considered known and eq~ted to zero). Vhen more knowns exist than

unknowns in the norl and decomposition equations, the model is said

to be overtdengfied. (Technically, the z4 path equation is

overidentified because z3 was deleted from Eq. 2.31).

Overidentification has a number of technical implications; however, our

concern here is with the substantive outcne. This outcome is that (a) any

correlation in the set of six correlations represented by Eqs. 2.32
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equation (Eq. 2.17c). The decamposition equations are shown ir Figure

2.17c. All terms involving £41 have a line crossed through them (i.e., are

omitted), which results in r r2' - being subject to an

overidentifying restriction. 7Wo different hypothetical, population

correlation matrices for the model in Figure 2.17a are shown in Figure 2.17d.

Given that all conditions and assumptions for confirmatory analysis and OLS

have been reasonably satisfied, the population OLS solutions of the path

coefficients for each of these correlation matrices are reported in Figure

2.17e. (Only the correlations differ; the path model is the same for both

correlation matrices). The observed correlations subject to an overidentifying

restriction and the reproduced correlations, based on the decomposition

equations in Figure 2.17c, are presented in Figure 2.17f. For matrix A, the

observed and reproduced correlations are identical, which suggests that (a)

241 = 0; (b) the path model in Figure 2.17a has a good fit with the data --

that is, the correlations in Matrix A; and (c) the path model is confirmed in

regard to the second test of confirmation / disconfirmation. For Matrix B,

however, discrepancies exist between the observed and reproduced correlations.

These results connote that (a) pl is not equal to zero and the terms

crossed out of the decomposition equations for -E41" -42*' -43* should

have been retained; (b) the path model in Figure 2.17a does not have a good fit

with the data represented by Matrix B; and (c) the path model is

disconfirmed.

Insert Figure 2.17 about Here

To summarize, the a priori prediction that £41 = 0 in Figure 2.17a
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through 2.37 that has a term crossed out (i.e., Ejs. 2.35, 2.36, and 2.37)

is (b) not constrained to be exactly reproduced by the path coefficients.

In more specific terms, -E41 -42*' and 143* are subject to an

overidentifying restriction (i.e., P4 3 = 0), and the reproduced

(sometimes referred to as implied) correlations resulting from Eqs. 2.35

through 2.37 may differ from their observed counterparts (- 41 ' 42'

.43). Asterisks are used to designate correlations subject to

overidentifying restrictions.

The hypothesis that P43 = 0 leads to the predictions that-[41"

and r3* will be equal to their observed counterparts, namely

-41' 142' 143- Consequently, if the reproduced correlations are

equal to their observed counterparts, then the predictions are confirmed.

This implies that P43 is equal to zero. Suppose, however, that the a

priori hypothesis that P43 = 0 is wrong, and 243 > 0. In this

situation, -41" 3 -41' -K42* 3 142' and -43" V -43 For

example, if all correlations and path coefficients are positive, then -41*

will underestimate 141 by a value equal to 243]3221 + 243231;

the terms deleted from Eq. 2.35. Thus, the goodness of fit test leads to

disconfirmation of the predictions evolving from a model with -43 = 0. The

implication of disconfirmation is that z3 has a direct effect on z4 .

We will now demonstrate the above rationale with an empirical

illustration, using the prediction that R-41 = 0 in place of P-43 = 0.

Figure 2.17 presents a path model (Figure 2.17a) and path equations

(Figure 2.17b) that are similar to the model and equations in Figure 2.16,

except for the fact that £41 is predicted to be equal to zero in Figure

2.17a. Consequently the P41Zl term is deleted from the z4 path
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resulted in an overidentification condition in which three correlations

were subject to an overidentifying restriction. In other words, three

reproduced correlations were not constrained to be equal to their observed

counterparts, although they were predicted to be equal to their observed

counterparts. The correlations subject to the overidentifying restriction

may be ascertained by deriving the decomposition equations using Eq. 2.18

for a just identified model (i.e., all paths included) , and then crossing

out those terms in the decomposition equations that involve a path

coefficient assumed to be equal to zero. Reproduced correlations may then

be calculated and canpared to observed correlations. Divergence of

reproduced from observed correlations disconfirms predictions regarding the

reproduced correlations and implies that a priori hypotheses are

incorrect. Reproduced correlations equal to observed correlations denote

confirmation of predictions and imply that the a priori hypotheses may be

valid.

Note that only correlations subject to overidentifying restrictions

should enter into goodness of fit tests. It would make no sense whatever

to use r21 , r31 , or- r32 in Figure 2.17 as a basis for testing

goodness of fit inasmuch as these correlations will be reproduced exactly.

moreover, the assumption that E.- = 0 must be made a priori. To

reiterate a point, consider a scenario in which a just identified model is

used to calculate the values of all path coefficients, and P41 is

found equal to zero. P41 is then deleted from the model, and the model

is regarded as overidentified. A goodness of fit test of predictions

evolving from P4, = 0 could not miss because one would know that the

calculated .241 = 0. Thus, the reproduced correlations would equal

t_
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the observed correlations. This is obviously not a legitimate goodness of

fit test, and the time has arrived for authors and reviewers to recognize

that the researcher must test the goodness of fit of the model he or she

begins with and not the model obtained by theory trimming (i.e., after

seeing the data).

The preceding discussion was based on population values. With sample

values, goodness of fit tests are designed to ascertain whether reproduced

correlations subject to overidentifying restrictions are different than

their observed counterparts. [A method of estimation other than OLS

(e.g., maximum likelihood) must be used to estimate structural parameters

if a significance test is desired in the comparison of the reproduced and

observed correlations.] However, the comparison between reproduced and

observed correlations is often not recommended for actual practice with

manifest variable designs because (a) it is complex statistically, (b) it

is difficult to interpret when more than one path is omitted from a model,

and most importantly (c) the omitted parameter test is a more direct method

that is easier both to compute and to interpret (cf. Dincan, 1975;

Namboodiri et al., 1975). We illustrate the difficulty of interpretation

issue below, and then demonstrate how it is possible to address the same

issue with the omitted parameter test in a more direct manner.

Consider the model in Figure 2.18, which predicts that both P32

and j241 are equal to zero. The path equations are as follows:

z 2 =P21l +u~2 (2.38)

_ 31£ +u 3 (2.39)

13 + 21K 2.3
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4= P242 2 + J243.3 u 4  (2.40)

Insert Figure 2.18 about here

If the model were just identified, the decomposition equations would be

the same as Eqs. 2.25 through 2.30. These equations are shown below, where

all terms involving P32 and .241 have been crossed out. With these

terms amitted, there are six known correlations and four unknown path

coefficients. Thus, the model is overidentified. once the four path

coefficients are solved for in the population (estimated in a sample), all

correlations except E12 are shown to be subject to an overidentifying

restriction.

-r2 1 = 221 (2.41)

3 1 = + P3 (2.42)

32  * + J23 1P 2 1  (2.43)

* 4 9 21 + .243P31 + 24?21 R (2.44)

14+ ?Ak2'.4P3P2 4 4L'- (2.45)

*143 243 +-4E' 24 2 231 22 1 + R-2 2 + (2.46)

Suppose all r are equivalent to their observed counterparts.

This denotes that predictions regarding reproduced correlations are

confirmed, and implies that P 3 2 = -241 = 0. Now, suppose r31"

9J
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r 31 and r 32 " = _32 , but 4 42' and -3* are not equal to

their observed counterparts. This pattern suggests that (a) 232 is equal

to zero, and (b) 241 is different from zero. That is, the riU.* involving

only £32 led to accurate reproduced correlations, while the r.*

involving -41 (and P32 ) did not. Predictions regarding correlations

containing 4 are disconfirmed because p41 is presumably not equal to 0.

Finally, suppose that all of the r..* diverge from the observed

r . r. 3 1 and / r 3 2 imply that /0. However,

the r4* -4j ( = 1,2,3) may be a result of either (a) £32 / 0

(which appears to be the case) or (b) 232 and B41 / 0. That is, we can

not infer whether £41 is equal or not equal to zero with this test. This

is hardly a trivial concern if one wishes to ascertain sources of

disconfirmation. As a result, the reproduced correlation test applied to a

single model is of questionable use in actual practice with moderately to

highly overidentified manifest variable designs. Duncan (1975) and Bentler

(1980) review other problems of a statistical nature. A refinement of this

test has been suggested for latent variable analysis, and will be discussed

in that section.

The Omitted Parameter Test

The logic of the reproduced correlation test is that if the values of

assumed equal to zero are in fact zero, then reproduced correlations

subject to overidentifying restrictions should be equal to their observed

counterparts. It would seem that one could save considerable fuss by

simply estimating, in a sample, the values of the £L assumed equal to
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zero to see if, in fact, they do not differ significantly from zero. That

is, if a path coefficient is hypothesized to equal zero, then one would

predict that its estimated value should not differ significantly from

zero. If the estimated path coefficient is not significantly different

from zero, then the prediction is confirmed. If it is significantly

different from zero, then the prediction is disconfirmed. This is the

omitted parameter test, and is logically equivalent to the reproduced

correlation test. More importantly, it provides a method to locate sources

of disconfirmation in recursive models.

lb begin the illustration, let us return to Figure 2.17, where it was

shown that the (population) path model did not have a good fit with Matrix

B. This implied that the omitted parameter 241 was not equal to zero.

It is possible to solve for the value of P241 by including P241 in

the path equation for z4 (Eq. 2.17c) and conducting a new OLS analysis

on the equation: A4 = -41A+ + z +3 u3 The

population value of P41 given by an OLS analysis using the correlations

in Matrix B is .20, which differs considerably from zero. Thus, the

omitted parameter test and the reproduced correlation test result in the

same conclusion for this simple model. Note also that if (a) the terms

deleted from the decomposition equations in Figure 2.17c are instead

retained, and if (b) the value of .20 is used for .241' then (c) the

observed and reproduced correlations for 141' -42' and -K43 are

identical.

Things are often not this simple. Let us continue with a discussion

of the omitted parameter test, where sample data are now assuned because we

wish to address significance tests. Consider the path coefficients in the

- " . . . .. . . -- . . .. .. . ' . . . .. . .. ... . . . . . .. .. : .. . .. . ... . .. . . .• ... .. . ... . .. .. ., _ t .. ............-.. I
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original path equations for Figure 2.18 (Eqs. 2.38 through 2.40). We will

presuime that the values of these coefficients are estimated using OLS. The

goodness of fit test is then conducted by inserting the variables with path

coefficients predicted to equal zero into the appropriate equations and

conducting new OLS analyses. In the present case, OLS would be conducted

to estimate the path coefficients in the following equations (the z

equation does not have an omitted parameter):

z3 = 231Zl + P3 2*_z2 + 93  (2.47)

4 l-l + P 2+ p 4 3 3 
+  (2.48)

where asterisks indicate the path coefficients that should be equal to zero,

and circumflexes denote that we are dealing with sample estimates of path

coefficients (and disturbances).

If P32 and .241* are not significantly different from zero,

then the predictions are confirmed. Confirmation implies that the

parameters or path coefficients 232 and P4, are zero and that this

part of the original path model is valid. That is, the omitted paths

should have been omitted. If *32* and/or 2-1I* is significant, then

at least one prediction is disconfirmed. Disconfirmation implies that the

original path model is invalid, which is to say that at least one omitted

path should not have been omitted (i.e., P32 and/or £41 is not

equal to zero). It is particularly important to note that this process

allows one to ascertain precisely the source of disconfirmation.

In samples, ^32" and *4l" are tested for significance using

standard tests for regression weights. There are, however, some problems

with the use of these significance tests. First, confirmatory analysis is

usually conducted on large samples. Thus, the test of significance is
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rather powrful, and paths with rather trivial magnitudes (e.g., a

= .05) may be statistically significant and lead to disconfirmation. There

are no clear rules of thumb here; one may wish to go beyond the data and

argue that a significant but very low path coefficient, less than .051for

example, does not do serious damage to a model. This is a matter of

judgment, however, and the author must have a strong theoretical defense in

support of such a decision.

A second problem is multicollinearity, which occurs when two or more

variables in the same equation are correlated highly with one another (see

Johnston, 1972, and Gordon, 1968, for discussions of indicators of

multicollinearity). A key product of multicollinearity is that "it becanes

very difficult, if not impossible, to disentangle the relative influences

of the various X [causal] variables" (Johnston, 1972, p. 160). In

effect, one can place little faith in sample estimates of structural

parameters and significance tests (cf. Gordon, 1968). The probability of

a multicollinearity condition is of serious concern in omitted parameter

tests (James & Jones, 1980). Consider, for example, Eq. 2.48, where

P41* is to be tested for significance. Variable zI1 is included in

an equation with two variables for which it is a cause, namely z 2 and

z3 . If z is a strong cause of z and z3 , then z will be

correlated highly with z and z It is possible, therefore, that the

equation used for the omitted parameter test (Eq. 2.48), which considers,

zIV 12' and z 3 as causes, could be subject to a multicollinearity

condition. Given multicollinearity, one has several options, including (a)

hierarchical regression (cf. Cohen & Cohen, 1975) or (b) a disturbance term

regression test described in James and Jones (1980). Inasnuch as these tests
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concern primarily statistical issues, they are not discussed here.

A final issue is protection of the significance level when multiple,

nonindependent significance tests are conducted on the same sample. This

issue has not been a concern in manifest variable analyses, although it

should be in both Conditions 9 and 10. We will treat this issue briefly in

the section on latent variables.

A Combination of the First and Second Tests of Confirmation/Disconfirmation

In the preceding condition (Condition 9) we described how it is

possible to confirm/disconfirm predictions furnished by structural (path)

models and functional (path) equations. This first test of confirmation/

disconfirmation addresses predictions that estimated values of structural

parameters (path coefficients) included in functional equations should be

significantly different from zero. The second test of confirmation/

disconfirmation described in the present section addresses predictions that

estimated values of structural parameters (path coefficients) not included

in functional equations (i.e., omitted parameters) should not be

significantly different than zero. The strongest case for

confirmation/disconfirmation is made if both tests are conducted, which

requires at least some overidentified equations to conduct the second test.

lb review how the tests are combined, consider the path equation for

z 4 in Figure 2.18, which may be viewed as:

24 -P41*= O)Z l + -42 2 + -43- 3 + -24 (2.49)

-=42 + +43A3 u 4 (2.50)
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The first test of confirmation / disconfirmation tests the predictions

that the sample OLS estimates of B42 and P43' or P42 and P43'

are significant. If both estimates are significant, we have partial

confirmation for this structural equation. The term "partial confirmation"

is used because the values of -42 and £43 are estimated conditional

on the assumption that -41= 0. If P42 and/or -43 is

nonsignificant (the interpretation of significance is left to the

investigator), then this functional equation, and therefore the structural

model, are disconfirmed, although we recommend that one still proceed to the

second test of confirmation/disconfirmation. The second test concerns the

prediction, based on the assumption that = 0, that ^41* is not

significant. The test requires another OLS analysis to obtain a value of
1 1is not significant, then the prediction has been

If4 PB4 1 *

confirmed and the functional equation is said to be (logically) consistent

with, or to have a good fit with, the data, given that P42 and £43

are significant. If, however, (a) either P42 or or both, is

nonsignificant, and/or if (b) i41" is significant, then (c) the

functional equation and the model are disconfirmed. Either source of

disconfirmation (i.e., the first or second test) implies that the equation

and the model are logically inconsistent, or fail to have a good fit, with

the data.

7b summarize, if all functional equations in a structural model pass the

first test of confirmation/disconfirmation, and if all overidentified

functional equations pass the second test of confirmation/disconfirmation,

I
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then the structural model is said to have a good fit with the data, or to be

logically consistent with the data. We ca. say, therefore, that the

structural model is confirmed because it has passed both tests required for

confirmation. However we can not conclude that the structural model which

generated the predictions is a "true model". By true we mean that the model

and functional equations accurately represent causal processes. On the other

hand, if a structural model is disconfirmed by either test, we have a strong,

but not necessarily unequivocal, case for concluding that the model is false.

These points are discussed in the next section, where we address "causal

inference".

3. CAUSAL INFERENCE WITH MANIFEST VARIABLES

"The insidious thing about the causal point of view

is that it leads us to say: 'Of course, it had to

happen like that.' Whereas we ought to think: It

may have happened like that-and also in many

other ways."

_ Ludwig Wittgenstein (1980)

We begin this section by restating the third principle for the logical

foundation of confirmatory analysis (the principles were presented in

Condition 9, Section 2). The principle is:

3. Confirmation of predictions implies corroborative support

for the structural model represented by the functional relations

and equations. Disconfirmation of predictions implies that one

or more components of the structural model (functional relations
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and equations) is false, in which case it is concluded that the

structural model as proposed originally is invalid.

We focus first on confirmation. The corroborative support provided by

confirmation implies completion of the following progression: (a) causal

hypotheses have been made and formally specified in a structural model and in

functional equations; (b) conditions pertaining to the appropriateness of

theoretical models (Cbnditions 1 through 7) and operationalization of

variables (Condition 8) have been reasonably satisfied; (c) a set of

predictions regarding significance of structural parameters and/or

reproduction of a correlaticn(variance-covariance) matrice have been derived

from the structural model and functional equations; and (d) the predictions

have been confirmed by empirical tests. This progression suggests that one is

in the position to make the judgment, or causal inference, that the causal

hypotheses on which the structural model and functional equations are based

are useful for explaining how and why the endogenous variables in the

model occurred and are related to other endogenous as well as exogenous

variables. Explanation is possible because structural models and functional

equations provide explicit, quantitative statements of theory that,

presumably, specify the rules that govern the occurrences of natural events

and the structure of observed relationships among naturally occurring events

(Heise, 1969). Confirmation of a structural model suggests that these rules

are useful and may be used to infer the causal processes that are, and wre,

operating.

one must be mindful that it is necessary to make a number of

untestable assumptions in the process of conducting a confirmatory
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analysis. By untestable assumptions w mean that reasonable satisfaction

of subsets of conditions from Conditions 1 through 8 is based on "faith"

and not empirical tests. For example, with cross-sectional data one cannot

test the stability condition (Condition 7), operationalize a cyclical

recursive model (Condition 4), or attempt to control bias resulting from an

unmeasured variables problem (Condition 5). Consequently, reasons must be

offered for assumptions that the model is stable and in an equilibriumn-type

condition, that causal relations are noncyclical within a temporal bound,

and that the unavoidable unmeasured variables problem is not sufficiently

serious to preclude confirmatory analysis. Prior research may furnish a

basis for assumptions, but an investigator cannot avoid the fact that

he/she is relying on faith when he/she assumes that untested conditions are

reasonably satisfied.

The issue of reasonable satisfaction is also important in regard to

conditions that can be tested empirically. It is usually necessary to rely

on reasonable satisfaction, rather than perfect satisfaction, of conditions

or subsets of conditions that can be subjected to empirical tests. For

example, perfect reliability is seldom attained in manifest variable

studies. As discussed in Condition 8, high reliability is generally

considered sufficient for reasonable satisfaction of the reliability

assumption, although no unequivocal definition existc fr:- "high", and the

effects of measurement error in elaborate models is often unpredictable.

Other assumptions that are potentially testable, but for which reasonable

satisfaction is considered sufficient, include the construct validity of

manifest variables, interval measurement scales, and linearity. Although
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reasonable satisfaction of empirically testable assumptions is considered

sufficient for proceeding with confirmatory analysis, the cumulative

effects of various, presumably nonserious, violations are essentially

unknown.

Untested assumptions, in combination with reasonable rather than

perfect satisfaction of tested assumptions, suggest that confirmation of a

structural model is not synonymous with proof that the model is true or

correct. Confirmation implies only that those assumptions that were tested

by empirical analysis provided corroborative support for the structural

model. This support may disappear, however, if an untested assumption is

shown later to be false, or if what appears to be reasonable satisfaction

of an empirically tested assumption is in fact unreasonable. These points

lead us to the crucial conclusion that it is possible to confirm a false

structural model. On the other hand, it is also possible to disconfirm a

true model. For example, a nonsignificant parameter estimate betwen

variables thought to be causally connected may be due to imprecision in the

measurement of the variables rather than lack of true causal connection

(cf. Cook & Campbell, 1979). Thus, disconfirmation is not necessarily

synonymous with disproof of a structural model, although, as discussed

shortly, disconfirmation, in comparison to confirmation, has stronger

implications for the usefulness of a structural model.

Before contrasting confirmation and disconfirmation, allow us to

furnish a simple illustration of how it is possible to confirm a false

structural model. Consider Figure 3.1, which presents a false path model

and a true path model for a manifest variable design. The difference

betwen the models is that the true model includes an additional, exogenous
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cause of z that is correlated with z2 , but not with zI . This

suggests that z is an unmeasured relevant cause of z in the false
-a -3

model, which implies that Condition 5 (self-containment) is violated in the

z 3 equation. However, note the predictions for the two models. Both

the false and true models predict that P21 and £32 will be

significant (first test of confirmation/disconfirmation discussed in

Section 2, Condition 9). The difference between the models is that P32

in the false model will be biased in an upward direction due to lack of a

control for z (assuming relations are linear and positive, and--a

disregarding suppressors). Furthermore, both models predict that p31

will be nonsignificant (second test of confirmation/disconfirmation

discussed in Section 2, Condition 10). The consequence of this situation

is that the true model furnishes no clear case for disconfirming the false

model if one were to employ the false model in a confirmatory analysis. In

other wvrds, given that the true model is in fact true, the false model

would be confirmed.

Insert Figure 3.1 about here

Numerous other illustrations could be used to demonstrate how it is

possible to confirm false models (cf. Duncan, 1975). The simple example

in Figure 3.1 makes the point that confirmation does not imply truth in a

structural model. We should also mention that this point is often

characterized in a different manner in the confirmatory literature. The

characterization is as follows: (a) a structural model will generate one

and only one set of correlations (variances-covariances) among manifest
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variables, although (b) a particular correlation matrix may be generated by

more than one structural model. Thus, two or more structural models may

generate the same correlation matrix, and demonstration that a model

reproduces a correlation matrix does not imply that it is a true, or a

unique, structural model. This characterization may be tied to our example

in Figure 3.1 by noting that P32" = 0 implies that r31= 221P32

in both the true and false models (given that z and z are

unrelated in the true model).

This problem has been a subject of concern in the philosophical

literature, as well as to us in advocating confirmatory analysis. We will

now draw from the philosophical and other literatures to explore this issue

further, our objectives being to point out a logical asymmetry between

confirmation and disconfirmation, to discuss the role of causal inference

in science, and to suggest approaches to confirmatory analysis that furnish

a comparatively stronger base for causal inference.

Returning to the question of confirmation, we have endeavored to point

out that confirmation of predictions regarding the signficance (first test)

and nonsignificance (second test) of estimated structural parameters, where

predictions were deduced for causal hypotheses, can not be used to

establish the truth of the causal hypotheses. 7b maintain fidelity with

the philosophical literature, we shall refer to predictions pertaining to

the significance/nonsignificance of estimated structural parameters as

"correlational hypotheses". Thus, given confirmation of a correlational

hypothesis, to conclude that the causal hypothesis (P) is true because the

correlational hypothesis (Q) deduced from it is true (confirmed) would

involve committing the fallacy of affirming the consequent. This fallacy
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occurs in arguments of the form, "P implies Q: Q is true; therefore, P is

true". The fallacy lies in the possibility that P logically may be false

even though Q is true. The only case in which the truth of P could be

inferred from the truth of Q would be if the truth of P were both

necessary and sufficient for the truth of Q. With empirical phenomena

this is not feasible because one can never rule out the logical possibility

that other reasons exist for Q to be true than those considered when

deducing that Q is implied by P. Try as we do to establish closed systems,

we never can be certain that we have done so. On the other hand, it is not

a fallacy to conclude that a causal hypothesis (P) is false if the

correlational hypothesis (Q) deduced from it is false (i.e., disconfirmed).

This is the form of the argument known by logicians as modus tollens,

which has the form: "P implies Q: Q is false; therefore, P is false."

Note, however, that this logic does not consider the possibility that a

correlational hypothesis may be falsified because of specification errors,

especially imprecision in the measurenent of variables. Thus, even

falsification of correlational hypotheses is not unequivocal, which

suggests that one should be circunspect about using a single

disconfirmation to falsify a causal hypothesis (cf. Cook & Campbell, 1979;

Popper, 1959)

For reasons such as those discussed above, the philosopher Popper

(1959) has argued that scientists can never deduce the validity of a

general proposition about the world from the truth of a proposition

concerning a prticular event deduced from the general proposition. On the

other hand, Popper argued that one can correctly infer the falsity of a

general proposition from the falsity of a proposition concerning a specific

... .. ... . r , -. *
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event deduced from the general proposition. Thus, as far as deductive logic

is concerned, Popper argues that science can only infer the falsity of

general theoretical propositions from particular events, never their

validity. Nevertheless, Popper recognizes the inclination of scientists to

act as if their general theories are true when empirical consequences

deduced from them are confirmed in experience. He euphemistically refers

to these situations as those in which theories are "corroborated" by the

confirmation of their particular consequences.

We have already discussed the point that the inference that a causal

hypothesis is true when a consequence (prediction) deduced from that

hypothesis is confirmed in experience would involve the commission of a

logical fallacy. The logical possibility always exists that the prediction

deduced from the causal hypothesis is confirmed for reasons other than

those w considered %hen formulating the causal hypothesis. This

limitation on the possibility for logical inference from empirically

confirmed consequences is, as discussed at the early part of this section,

a function of the fact that it is not possible to test empirically all

conditions required for confirmatory analysis, or to be assured that

empirically tested assumptions have been fully satisfied. It follows

directly that causal inference based on confirmatory analysis must be

tenuous, which is to say subject to alternative explanations. In other

words, the limitation comes down to a limitation associated with all

attempts to establish inductive forms of reasoning where one seeks to

generalize from particulars in experience. Cn the other hand, the

inference that a causal hypothesis is false when a prediction deduced from
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that hypothesis is disconfirmed in experience is not an invalid inference

as long as one is committed to act as if the deduced consequence is false.

It is a question of the correct use of deductive logic, not whether

deductive logic leads to necessary truths about the world. Thus, one

appears to be in a better position to infer the falsity of causal

hypotheses rather than to infer their validity on the basis of experience.

This is essentially the position advocated by Popper (1959) and echoed by

others (cf. Cook & Campbell, 1979; Duncan, 1975; Heise, 1975; Namboodiri

et al., 1975).

There is something disturbing, however, about a position that suggests

that all we can do in science is negate something, never affirm it. This

position seems to run counter to our experiences in which scientific

theories are offered as explanations of phenomena. It runs counter to the

passion with which we and others affirm the truth of a scientific idea or

the confidence we have when we use laws of physics.to build bridges and to

operate space shuttles. To be a scientist involves committing oneself to

the affirmation of corroborated theories while at the same time submitting

them continuously to empirical tests.

In our view, one must understand Popper's (1959) emphasis on the

falsification of theory as the outcome of an analysis of what could

rationally be concluded in attempts to validate scientific theories.

Popper explicitly ruled out as irrelevant for his analysis psychological

(extralogical) concerns such as how theories might be formulated or

developed from experience. Presumably, he would also rule out as
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irrelevant psychological concerns about what people would do once they have

subjected a theory to the test. Thus, if people act as if a theory is

true when it is merely corroborated, this must be for Popper merely a quirk

of human behavior having no rational justification on the basis of the

evidence used to validate the theory. But being a matter of extralogical

behavior, it is beyond the confines of his analysis. There can be no

question that acting as if a theory is true when it has been merely

corroborated-which we may regard as a form of inductive behavior-is an

important aspect of the scientific enterprise. Thus, if Popper's account

of the scientific enterprise seems distorted to us, it is because it is

actually limited to only the logical aspect of the enterprise.

It may be disheartening to find that corroboration of a structural

model guarantees neither that the model is unassailably correct nor yields

a unique explanation of relations among variables in the model. But, as we

have endeavored to explain, this is the limitation of inductive

"inference". khat one must keep in mind is that the goal of confirmatory

analysis in science is to attempt to explain how and why variables occur

and are related. An intuitive approach to causality and causal explanation

in psychological research involves proposing functional relations among

variables in the form of structural models (theories). If the causal

explanations represeted by functional relations (equations) are empirically

corroborated by data, this does not mean that we will enter into a state of

suspended animation. Rather we will seek to disseminate our inferences

regarding causal explanations so that others may test them. We also seek

to apply the explanations to solve problems, a process which furnishes

additional sources of confirmation / disconfirmation. We continue in these
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and other endeavors until some other explanation canes along to replace the

present one, or until we encounter one, and preferably more than one,

instance in which it is clearly disconfirmed. One must strive to obtain

explanations for events, even if to do so involves ambiguities and

pitfalls.

But what happens if a particular set of observations leads to the

corroboration of not just one but of two or more distinct causal theories?

Popper (1959) considered this problem, and suggested that theories that are

more easily falsifiable are to be preferred to those that are less easily

falsifiable. To illustrate this rationale, consider that an easily

falsifiable manifest variable model is one in which a reasonably

parsimonious structure is used to explain a large number of observed

correlations among manifest variables. In other words, the number of

parameters that are predicted to equal zero is large in comparison to the

number of parameters that are free to vary and to be estimated, which is to

say that the model is highly overidentified. Thus, we have a comparatively

large number of overidentifying restrictions, any one of which could

disconfirm the model. In contrast, if only a few parameters are predicted

to equal zero and the rest are left to be estimated, then only a few

overidentifying restrictions remain with which to test goodness of fit.

Using Popper's suggestion, the former model should be preferred over the

latter model because it is more easily falsified (and parsimonious). The

larger the number of overidentifying restrictions (i.e., the higher the

degree of overidentification), the more likely the model is to be

falsified. (Note that we are dealing here only with the second test of

confirmation/disconfirmation. This test is considered by many to be the
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more crucial test of goodness of fit because nonsignificant, estimated

structural parameters of minor theoretical relevance can be theory trimmed

without major theoretical damage to a model. Nevertheless, a

nonsignificant estimate of a parameter of major theoretical significance is

seriously damaging to a theoretical model and results in disconfirmation

based on the first test of confirmation/disconfirmation.)

A second procedure that builds faith in a corroborated structural model

is to subject multiple, highly overidentified structural models to

confirmatory analysis. In general, psychology has no dearth of theories

regarding the causes of human events. In fact, the problem is often too many

competing theories rather than too few theories. Each theory represents an

alternative explanation of events, and the recommended procedure is (a) to

develop a highly overidenified structural model for each theory, where each

model includes causal hypotheses that conflict with those of the other models;

(b) to subject each structural model to a confirmatory analysis; and (c) to

contrast the results of the confirmatory analyses and ascertain which one of

the structural models has the best fit with the data (i.e., provides the most

plausible explanation). It is possible, of course, that two or more models

will still have essentially equivalent fits with the data. This is a

worthwhile finding, however, because the investigator will not now accept

blindly one model as corroborated. Furthermore, assuming that some models

were disconfirmed, the investigator has a basis for identifying a reduced set

of plausible models. The next step is to articulate further each plausible

model in the interest of deriving conflicting hypotheses that can be tested in

future confirmatory analyses.

In conclusion, no claim can be made that causal inferences lead to unique
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or unassailably correct causal explanations. It must be recognized that

accumulation of scientific knowledge may provide a basis for refuting an

inference at some future date. The process of causal inference rests on the

premise that w will use the knowledge that is presently available to attempt

to explain why psychological phenomena occur. This is the historical premise

of science; it is what one does when he/she behaves as a scientist.

4. AN OVERVIEW OF LATENT-VARIABLE STRUCTURAL MODELS.

Introduction

Up to this point we have discussed linear causal modeling with

observed or manifest variables. We will now consider the more general

case in which some of the variables of a linear causal model are latent

or unobserved variables. As defined earlier, a latent variable is a

hypothetical or theoretical construct, which is to say, an unobserved

variable presumed to exist within a structural model but for which direct

measurements are not available.

Linear models with latent and manifest variables are not new in

psychology. Psychologists have worked with such models for over 60 years

in connection with common factor analysis and the classical theory of

reliability with its "true" and "error" scores. However, structural

equation modeling with latent variables became practical only after

statisticians working in the area of factor analysis (J8reskog, 1970)

saw ways to generalize these efforts to encompass linear structural

equation modeling (Wiley & Wiley, 1970; Keesling, 1972; Wiley, 1973;

J8reskog, 1973, 1977, 1979; J~reskog & Goldberger, 1975). These
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developments in statistical theory provided the basis for the development

and distribution of general purpose camputer programs for structural

equation modeling with latent variables such as J8reskog and S~rban's

(1978) LISREL IV program and McDonald's (1978, 1980) COSAN program. As a

result, increasing numbers of psyhologists are today discovering the

usefulness of structural equation models in their research, while

increasing numbers of sociologists, econometricians and geneticists are

using structural equation models with latent variables.

Reasons for latent variable models. There are a number of reasons

for considering the use of latent variables in modeling causal

relationships.

First, since most of our theoretical constructs are abstractions, it

is convenient to distinguish between a hypothetical construct as a latent

variable and a concrete realization of it in a particular manifest

variable.

Second, the concrete realization of a construct is nonunique; the

same theoretical construct may be operationalized in any number of ways.

Thus, we can think of a damain of manifest observed variables, all of

which have in cammon the same underlying construct. For example, general

intelligence may be measured by various tests-for example, the

Stanford-Binet, the Wechsler Adult Intelligence Scale (WAIS), Raven's

Progressive Matrices, and the Lorge-Thorndike Test. In principle, the

number of wys in which a construct may be implemented operationally

through manifest variables is unlimited.

Third, our observed variables may involve fallible measurements,

which means that in addition to the effects of the hypothesized
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constructs, the values of our variables may also reflect errors of

measurement of an unsystematic nature. Attempts to estimate structural

parameters with manifest-variable approaches when the variables contain

nonnegligible errors of measurement may lead to serious bias in the

estimates.

Fourth, measurement of manifest variables may include systematic or

nonrandan sources of error, such as variation due to method, context, or

person variables. These too, if overlooked or ignored, will lead to

serious bias in estimates of structural parameters. Latent variable

approaches provide means to deal with both random and nonrandan

measurement errors.

Finally, we may not be able to devise direct, univocal measures of

the theoretical construct in question because the effects of the

theoretical construct may never occur in isolation apart from the effects

of other causal variables. For example, we may never be able to devise a

measure of general intelligence (conceived of as the capacity to perceive

relationships) without its effects being confounded with other variables,

such as the various capacities involved in coding the content of the

stimulus materials (e.g., verbal, figural, numerical). In general, it is

situations such as the above that may be treated with models involving

both manifest and latent variables.

Developing latent variable models. Consider the latent structural

model shown in Figure 4.1a. This model is essentially the model of the

causes and effects of perceived role overload presented earlier in connection

with Figure 2.1. However, in this case the variables in the model are

represented by perfectly reliable latent variables. They are perfectly
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reliable latent variables because they correspond to hypothetical construct

variables that have not yet been operationalized by linking them to specific

manifest measures. The four hypothetical constructs or latent variables are

(1) management's expectations regarding quality of employees' role

performance (expected quality), (2) management's expectations regarding

quantity of employees' role performance (expected quantity), (3) employees'

perceptions of role overload (role overload), and (4) employees' state

anxiety. The model states that among employees in an organization, the more

their supervisors expect high quality of performance, and the more their

supervisors expect high quantity of performance, the more the employees will

perceive role overload, which in turn will increase the employees' levels of

state anxiety. The unlabelled disturbance terms assigned to perceptions of

role overload and to state anxiety, however, indicate that there may be other

causes of these variables.

Insert Figure 4.1 about here

For the sake of illustration, let us assumie that the conditions for

the appropriateness of a theoretical model (Conditions 1 through 7) are

satisfied and that this model is an accurate representation of causal

relationships. Also let us assume, again for the sake of illustration,

that the correlation between the two latent exogenous variables, expected

quality of role performance and expected quantity in role performance,

is zero.

So far, we have stated our model only in terms of latent variables.

It is not possible to estimate the strengths of causal relationships in
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the latent structural model because the latent variables are unmeasured.

7b estimate the strengths of these causal relations, it is necessary to

operationalize each of the latent variables in terms of manifest variables

that are believed to be caused by a latent variable. In this sense, each

latent variable has the role of a canmon factor, and the manifest

variables serve as manifest indicators of the common factor.

Figure 4.1b presents possible manifest indicator variables for each

of the latent variables. This is referred to as the measurement model

because it specifies presumed causal relations between latent variables

(causes) and the manifest or measured variables (effects) that serve as

indicators of the latent variables. For example! four indicators of

expected quality of work performance might be role demands regarding

(a) reduction in waste (reduction-waste) , (b) reduction in number of

faulty units produced (reduction-faulty units) , (c) increased number of

inspections (increased inspections) , and (d) increased dependability of

product in tests of randomly selected units (increased dependability).

The small E (epsilon) associated with each manifest indicator of

expected quality is a disturbance term that includes all causes of the

manifest variable other than the latent variable, such as measurement

error and nonrandam measurement errors.

Multiple indicators are considered necessary for expected quality

of work because either (a) expected quality can be manifested in a

number of ways, or (b) individual indicators may be measured with error,

or both (a) and (b). In contrast, only one manifest indicator variable

is associated with the quantity of work latent variable, namely, the

degree to which production quotas are satisfied (production quotas).
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Furthermore, the production quotas variable has no disturbance term.

The use of one manifest indicator variable denotes that the manifest

variable is regarded as a perfect indicator of the latent variable.

This means that the indicator is the primary way that the latent variable

is manifested and that the indicator contains neither random nor nonrandom

measurement errors. This appeared reasonable inasmuch as production

quotas are the key measures of quantity or work, are publicly stated,

and the degree to which they are satisfied is measured objectively.

Such is not the case for the role overload and state anxiety latent

variables, for which multiple manifest measurements are often available, each

of which contains error. Thus, multiple indicators are needed, which for

role overload might be the extent to which employees perceive (a) the need to

work extended hours (extended hours), (b) an insufficient number of employees

to accomplish role demands (insufficient personnel) , (c) insufficient time to

complete tasks (insufficient time) , and (d) managerial pressure for

productivity (managerial pressure). The four manifst indicators of state

anxiety might include two self-report questionnaires for state anxiety, such

as (a) the Behavioral Reactions Questionnaire (BRQ; Endler & Mgnusson,

1977), and (b) the State-Trait Anxiety Inventory (S-T Inventory; Spielberger,

1977), and two physiological indicators, such as (c) gastrointestinal

distress, and (d) headaches. Each of the manifest indicators for role

overload and state anxiety are also believed to be caused by a disturbance.

Mien manifest variables are regarded as nonperfect indicators of latent

variables, the goodness of fit of the measurement model must be tested. In

the present example, this suggests that the goodness of fit of the indicators

for quality of work, role overload, and state anxiety must be tested. The
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test takes the form of a confirmatory factor analysis, and is designed to

ascertain if manifest indicator variables are related to latent variables in

the manner predicted by the measurement model. The test is discussed later

in this section; this discussion includes a rationale for why at least four

manifest indicators are required for each latent variable in order to conduct

a goodness of fit test.

Given reasonable satisfaction of the goodness of fit of the measurement

model, it is possible to proceed to estimate the strengths of the causal

connections among the latent variables and to test the goodness of fit of the

latent structural model. Statistical procedures for accomplishing these

tasks are also explained later. At this time we note only that the

estimation and testing processes involve combining the measurement model with

the latent structural model. The combined models for this illustration are

shown in Figure 4.2. A model taking the form of Figure 4.2 is often referred

to as a "latent variable model" or a "latent variable structural equation

model".

Insert Figure 4.2 about here

Latent variable models versus manifest variable models: The question

of reliability. A major drawback of manifest variable models is that

they will yield biased estimates of structural parameters and path

coefficients linking latent, hypothetical construct variables when these

variables are represented by fallible (not perfectly reliable) manifest

indicator variables in a manifest variable path analysis. For example,

consider first the path model shown in Figure 4.3a. This is the latent
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structural model presented in Figure 4.1a. The variables in the model are

represented by perfectly reliable standardized latent variables. They are

considered standardized because units of measurement are arbitrary, and zero

means and unit variances are convenient.

Insert Figure 4.3 about here

Again, for the sake of illustration, let us assume that this model is

an accurate representation of causal relationships. Furthermore, let us

assume that in the population of employees to be considered, the

(population) path coefficients associated with the latent variables are as

they are given in Figure 4.3a. (Primes denote 'path coefficients linking

latent variables). Note that the magnitudes of these path coefficients

suggest that perceptions of role overload are influenced more by role

expectations regarding quality of performance (P'3 1 = .60) than by role

expectations regarding quantity of performance (P' 3 2 = .50). Again,

let us assume that the correlation between the two latent exogenous

variables is zero. Finally, we assume that the two exogenous variables

do not relate directly to the latent state anxiety variable.

Suppose that for each latent variable of the model we now choose

one manifest variable to serve as an indicator of the latent variable.

But suppose, as often happens, that many of the manifest indicators

are not perfectly reliable. Then consider Figure 4.3b, which is a latent

variable model that includes both the structural and measurement models.

That is, we have added four standardized manifest variables to the model,

which, with the exception of production quotas, are fallible indicators
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of the respective latent variables. The three fallible indicators are

easily identified because they are viewed as effects of a disturbance

designated by E. Disturbance terms are regarded as latent variables and

are considered here to be in standardized form. Moreover, these latent

disturbances are regarded as consisting exclusively of errors of measurement

in this illustration. This means then that the measurements (scores) on

each falliable manifest variable are presumed to be a function of both a

latent variable and randan measurement error.

Given standardized variables, the causal effects of the latent

variables on the manifest variables may be represented as path

coefficients. In fact, because we assune that the E consist only of

random measurement error, the path coefficients associated with the arrows

going from the latent variables to their manifest indicators represent

the square roots of the reliabilities of the manifest variables. For

example, the path coefficient linking the expected quality latent variable

to its manifest indicator, increased dependability, is .81; the

corresponding reliability, shown in parentheses, is .65. Note that only

production quotas, the manifest indicator for the latent variable of

expected quantity of role performance, has a reliability of 1.00. As

before, this means that the manifest variable is a perfect indicator of the

latent variable. The reliabilities of the remaining three manifest variables

are less than 1.00, indicating randan error in measurement and the lack of

perfect correspondence between latent and manifest variables.

By processes to be explained later in this section, it is possible to

solve for the correlations among the four manifest variables using the path
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coefficients shown in Figure 4.3b. These correlations can then be used to

solve for the path coefficients linking the manifest variables by the OLS

procedures discussed in Section 2. The results of the path analyis on the

manifest variables are reported in Figure 4.3c.

It is now interesting to conpare the path coefficients in the manifest

variable model (which do not have primes) in Figure 4.3c with the "correct"

path coefficients of the latent variable model in Figure 4.3a. The

corresponding values for these path coefficients are not the same. This

means that if we use a manifest variable approach with fallible indicators

of latent variables to estimate the path coefficients among the presumed

perfectly reliable latent variables, then the estimates will be biased. In

this illustration the estimates are all attenuated. Moreover, the bias is

sufficient to lead one to reverse the relative importance of causes on a

dependent variable. For example, in Figure 4. 3c the path coefficient

relating the indicator for expected quality of role performance (i.e.,

increased dependability) to the indicator for role overload (i.e.,

insufficient time) has a value of .42 (231 
= .42). This value is less

than the path coefficient relating the indicator for expected quantity of

role performance (production quotas) to the role overload indicator (P32

= .44). This is just the reverse of the "correct" situation in Figure

4.3a, where the path coefficients are P31' = .60 and 23 2 ' = .50,

respectively.

In sun, measurement error in manifest variables may have serious

consequences for confirmatory analysis. If the measurement error is

regarded as nontrivial, then corrective procedures are required.

Corrective options include the latent variable form of analysis to be

LI
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described here, as well as other procedures described elsewhere, such

as correction for attenuation in path analysis (cf. Kenny, 1979), and

instrumental variables and two-stage least squares (cf. Goldberger,

1973; James & Singh, 1978).

Summary. Random measurement error is not the only reason for

considering latent variable models. In fact, good reasons exist for using

a latent variable approach even if manifest variables can be measured with

a high degree of reliability. Consider the points made earlier-that many

latent variables (hypothetical constructs) are abstractions and can be

operationalized by any number of manifest indicator variables. An

important aspect of confirmatory analysis with latent variables is a test

of the goodness of fit of an a priori measurement model, which is to say,

a test of whether multiple manifest indicators are related to latent

variables by a structure hypothesized by the investigator. In effect, this

is a test of the construct validity of the manifest indicators and, by

implication, of the adequacy of the proposed latent variables. Thus, a

latent variable analysis makes possible a test of construct validity,

another key measurement concern. Of at least equal importance is the fact

that (a) given a good fit between a proposed measurement model and the

observed data on manifest indicators, then (b) it is possible to estimate

the strengths of causal relations among the latent variables. As in

manifest variable models, the causal relations among latent varibles are

estimated within the context of a structural model relating the latent

variables. Goodness of fit tests based on the logic of Condition 10 are

performed if the latent structural model is overidentified.

In summary, latent variable analysis provides the opportunities
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(a) to work with perfectly reliable causes and effects, (b) to test the

goodness of fit of a presumed measurement model, and (c) to test the

goodness of fit of a structural model relating latent variables both in

terms of estimating causal parameters and in terms of testing

over identifying restrictions.

one does not partake of the benefits of a latent variable approach

without paying a heavy price. The lesser part of the price is that one

must conquer a canplex and often cumbersome terminology. more demanding

is a requirement that one have a methodological sophistication that

exceeds even that required in the most complex multivariate course

generally offered in psychology. However, we believe the price is

worthwhile for those desiring the benefits. In the discussion to follow,

we have tried to ease the pain by focusing on the logic of the approach

and merely overviewing many of the statistical equations. However, we

believe that it is important to maintain fidelity with what truthfully is

a very conplex procedure. It is also noteworthy that the pitfalls of the

latent variable procedures are not as well-known as those associated with

the manifest variable procedures, which is due to the fact that the latent

variable approaches were developed much later than the manifest variable

approaches. Finally, our attention in this section is focused on the

operational aspects of latent variable analysis. However, as reviewed at

the end of this section, the seven conditions pertaining to the

appropriateness of theoretical models for confirmatory analysis are every

bit as important for latent variable models as they are for manifest

variable models.
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Representation of Structural Models with Latent Variables.

Notation. With the need now to distinguish between manifest and

latent variables in our discussion, we need a new notation. The notation

we will use, with minor modifications on our part, was suggested by Bentler

and Weeks (1980). In Figure 4.4 we show the hypothetical structural model

of Figure 4.3a in the new notation. In this notation latent exogenous and

latent endogenous variables are represented in structural diagrams by

letters enclosed in circles or ellipses. Latent exogenous variables are

designated by the Greek letter E (xi) with subscripts, while latent

endogenous variables are designated by the Greek letter n (eta) with

subscripts. Disturbance terms or variables are always treated as latent

variables and are identified by the Greek letter £E (epsilon) with

subscripts but without enclosing circles or ellipses.

Insert Figure 4.5 about here

As in structural diagrams with manifest variables, causal connections

between variables are indicated by arrows, with each arrow pointing from a

causal variable to an effect variable. The lack of an arrow between two

variables indicates the lack of a direct causal connection between these

variables. Associated with each arrow is a structural parameter that

indicates the number of units of change in the effect variable resulting

from a unit change in the causal variable, holding all other causes of the

effect constant. A structural parameter corresponding to a missing arrow

is regarded as fixed and equal to zero. The structural parameter

associated with an arrow from an exogenous variable to an endogenous
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variable is designated by the Greek letter Y (gamma) with subscripts, the

left-most subscript indicating the number of the endogenous variable and

the right-most subscript indicating the number of the exogenous variable.

The structural parameter associated with an arrow fram one endogenous

variable to another endogenous variable is indicated by the Greek letter a

(alpha) with subscripts, with the left-most subscript the number of the

endogenous variable that is the effect variable and the right-most

subscript the number of the endogenous variable that is the causal

variable. The structural parameter associated with an arrow from a

disturbance variable to an endogenous variable is designated by the Greek

letter 6 (delta) with subscripts. IWo-headed arrows connecting pairs of

exogenous variables or disturbance variables indicate nonzero covariance

relations between these variables.

In Figure 4.4 &l and -2 are latent exogenous variables. Both are

causes of latent endogenous variable n but not of latent endogenous

variable _n2 . The two-headed arrow between latent exogenous variables

-l and -2 indicates a presumed nonzero covariance between them. Latent

endogenous variable Y1 is in turn a cause of latent endogenous variable

- "Variables -6, and -2are disturbance variables, each associated with

its respective endogenous variable. The disturbance variables are presumed

to be uncorrelated.

A model with all latent variables in it, like the model in Figure

4.4. cannot be tested empirically until it is operationalized by linking

the latent variables to manifest variables in an appropriate way. The

linkage of a latent variable to manifest variables in a model is usually

accomplished by including at least four manifest indicator variables that
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are presumed to be effects of (i.e., caused by) the latent variable. The

reason four manifest indicator variables are required is so that the latent

variable and the structural parameters indicating the degree of its effect

on the indicator variables will be overidentified. This allows one not

only to estimate uniquely the structural parameters but also to test the

presumption that the manifest indicator variables have a latent variable as

a common causal variable. Such a situation is illustrated in Figure 4.5,

which shows four indicator variables Y'"...4' each an effect of

latent exogenous variable l and one of the mutually uncorrelated

disturbance variables el,... , t4. Figure 4.5 also serves to introduce

notation for manifest variables in structural models with both manifest and

latent variables. Notice that variables are enclosed in

boxes. This means they are manifest variables. They are furthermore

designated by the letter y, which indicates that they are manifest

endogenous variables. The Greek letter Y (gamma) is again used to

indicate a structural coefficient of a causal relation between an exogenous

variable and an endogenous variable. Moreover, the Greek letter 6 (delta)

is again used to indicate the structural coefficient of the effect of a

disturbance variable on an endogenous variable.

Insert Figure 4.5 about Here

Our notation also permits us to have manifest exogenous variables. As

shown later, these will be designated by the letter x enclosed in a box.

Howver, manifest variables selected as indicators of a latent exogenous

variable are ordinarily endogenous and not exogenous variables. The reason
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this is so is because the manifest variables chosen 
as indicators of a

latent exogenous variable are usually effects of not only the latent

exogenous variable in question but of extraneous variables as well, which

are subsumed under the respective disturbance variables attached to the

manifest indicator variables. Not the least important of these extraneous

variables will be errors of measurement. Furthermore, the effects of a

latent variable on its manifest indicator variables may be measured in

different units of measurement, which would be reflected in different

values for the structural parameters relating the latent variable to its

respective manifest indicator variables.

However, before we proceed, we must consider how we would treat an ideal

situation in which we had more than one presumably "pure", disturbance-free

manifest indicator variable of a latent variable. Figure 4.6 illustrates

just such a model. Variables YI''"y4 are disturbance-free manifest

indicators of latent exogenous variable -i" By "disturbance-free" in this

case we mean that each indicator variable has only the latent variable

as a cause. There are no extraneous causes in addition to the latent

variable 1. In this example the indicator variables are perfectly

correlated with the latent exogenous variable (and with one another). They

differ among themselves in having different values for the structural

parameters relating them to the latent exogenous variable because, say, they

are measured with different units of measurement.

Insert Figure 4.6 about Here

when we have more than one disturbance-free indicator of a latent
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variable, then we should discard all but one of these for use in a model.

This will avoid the problem of singularity for the variance-covariance

matrix of the manifest variables that arises from having several variables

that are simple linear combinations of other variables in the analysis. (A

singular or noninvertable sample variance-covariance matrix for the

manifest variables would preclude obtaining estimates of the structural

parameters of the model). The indicator variable retained and the latent

variable it "indicatesn can then be treated as simply identical. That is,

we can replace the latent variable by the manifest variable in the model.

If the latent variable replaced by a "disturbance-free" manifest indicator

has a disturbance term, because the latent variable is an endogenous

variable as well, then the manifest indicator acquires the disturbance term

of the original latent variable. This disturbance is not the disturbance

of which the manifest indicator is "disturbance-free". Saying that the

manifest indicator is a disturbance-free indicator simply means that

relative to the latent variable as a cause of the indicator, there are no

other extraneous causes. 7his says nothing about the extraneous causes of

the latent variable that the indicator may replace.

Thus, given these notational considerations, we might have a model

like that in Figure 4.7. In this model we have one latent exogenous

variable, -1, linked to four manifest variables, Y2'" [5' each

of which is also linked to one of four disturbance variables E2'""

!5" We also have a single manifest exogenous variable x2 . Variables

- and x2 are also causes of a manifest endogenous variable, YI' to

which is also drawn a disturbance variable -l representing a component of

Yl not caused by the exogenous variables. Note that with this example
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we have introduced a manifest exogenous variable and denoted it by the

subscripted letter x contained within a box. Also we have used the

Greek letter Y (gamma) to denote structural parameters relating exogenous

variables to endogenous variables, while (delta) denotes the structural

parameter relating a disturbance variable to an endogenous variable.

Insert Figure 4.7 about Here

A situation in which one has four exogenous manifest variables regarded

as causes of a single latent variable, which we illustrate by a model in

Figure 4.8, should not be confused with a situation in which one has four

manifest indicator variables, each an effect of a common latent variable,

such as illustrated in Figure 4.7. In Figure 4.8 we presume that the

manifest variables Xl,...,x4 are perfectly reliable but not strongly

correlated, exogenous variables. Each of these manifest exogenous

variables is a distinct cause of latent variable 11, which also is an

effect of a latent disturbance variable i . Latent variable r is in

turn a canmon cause of manifest indicator variables Y2' "Y5' each

with its respective disturbance variable -2#""-!5' Again Y refers to

structural parameters relating exogenous to endogenous variables, m

to structural parameters relating endogenous to endogenous variables, and

S to structural parameters relating disturbance terms to endogenous variables.

Insert Figure 4.8 about Here

Note also that in these models we have numbered variables in the
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following way: Exogenous variables are grouped together and latent

exogenous variables are numbered first, before manifest exogenous

variables are ninbered. Similarly, endogenous variables are grouped

together and latent endogenous variables are numbered before manifest

endogenous variables. Disturbance variables receive the number of the

corresponding endogenous variable.

Structural equations. Consider the structural model in Figure 4.9.

This model represents an operationalization of the latent construct

variables of the model in Figures 4.3a and 4.4. Note that the model

contains both latent and manifest exogenous variables as well as latent and

manifest endogenous variables. !l is a latent exogenous variable

operationalized by four manifest endogenous indicator variables

Y1 1 ,...,l1 4. ?2 is a manifest exogenous variable. -, and

i2 are both causes of a latent endogenous variable -i, as indicated

by the arrows from -1 and x2 to 11. Four manifest endogenous

variables Y3'""56 serve as indicators of 711 as indicated by

the arrows from - to these variables. i is also a cause of latent

endogenous variable 12, which in turn serves as a common cause of

manifest endogenous indicator variables Y7'""YI0" Further note

that each endogenous variable in this model has one of the latent

disturbance variables 6 1...,614 associated with it. Also observe that

there are no double-headed arrows between -1 and x2' indicating that

these exogenous variables are uncorrelated, while there are also no

double-headed arrows among any of the disturbance variables, indicating

that they too are mutually uncorrelated.

As in the case with models with manifest variables, we may express the

__________________
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model in Figure 4.9 by a system of simultaneous equations. one equation is

developed for each latent or manifest endogenous variable, which means we

shall have 14 equations. Each equation includes the latent and/or manifest

variables that have a direct effect on the endogenous variable, including

disturbance variables. This system of equations follows:

1l Y - + Y x + S6
-11- 1 -12-2 -11-1

n2 = 211 + -22-2

Y3 = a31-l + -33-3

y4 = %l1l + §44

Y5 -7501 + 8S5-e

Y6= 6ll + §6606

Y7= '722 + 87787 (4.1)

Y8 = '2NO2 + -88:8

Y9 =  S902 + 99%

Yl0 = 250,212 + 8.0,10,10

y- =  +  n,11-11§

Y12 =  ?12,1 +  812,1A12

Y13 =  -1l,1 l +  13,13-13

Y1 =Y4,151l +-14,1414

Matrix Equations. The model in Figure 4.9 is a relatively simple

linear structural model with latent variables. But latent variable models

can becane much more complex. For instance, a model may involve many

latent causal and effect variables, each of which is represented by a

number of manifest indicator variables. In other latent variable models,

the exogenous variables may be intercorrelated. Disturbance variables may
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also be mutually intercorrelated. (Disturbance variables must not be

correlated with exogenous variables). Ordinary algebraic notation thus

becanes extremely cumbersome to deal with in structural models with latent

variables. And so, latent variable models are usually described with

matrix algebraic equations.

There have been a number of notational systems proposed for

representing structural equation models by equations in matrix algebra. A

very popular system of matrix notation is used in connection with the

LISREL canputer program of J8reskog and S8rban (1978). This notation

distinguishes between a structural equation model and a measurement model.

Distinguishing between these two models is based on the assumption that all

structural equation models are ultimately hypothetical models involving

latent variables. But to confirm a structural equation model we must link

the hypothetical structural model to observed variables by constructing,

for each hypothetical latent variable of the structural model, a number of

manifest variables that measure effects of the latent variable. The latent

variables of the structural model are then regarded as common factors of

the manifest indicator variables. The measurement model thus refers to the

structure expressed as a confirmatory factor analytic model of the

relationship between the hypothetical latent variables and their manifest

indicator variables. However, a quirk of the LISREL notation is that no

manifest indicator variable may be an effect of both a latent exogenous and

a latent endogenous variable at the same time. Furthermore, the distinction

in the LISREL notation between the structural parameters of the structural

equation model and the "factor load ings" of the measurement model

introduces unnecessary canplications in the algorithm and the computer code
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needed to implement the estimation of these parameters.

In addition to the LISREL notation, a number of other notations have

been proposed, apparently in an attempt to find a general model that

contains all structural models--including structural equation models,

analysis of covariance structure models, and common factor analysis

models--as special cases. Of note are mvzDonald's (1978, 1980) COSAN

(Covariance Structure Analysis) model and associated program, and Bentler's

(1979) model. McArdle (1979, 1980) proposed that all these models

and their notations are special cases of each other. He suggested that

these models could all be seen as special cases of a very simple but

general model in which there is no distinction notationally between a

structural model and a measurement model nor a need for the multiple levels

of nested orders of factors, as had been proposed by McDonald (1978) or

Bentler (1976). Bentler and Weeks (1980) proposed a matrix notation for a

general structural equation model that may be seen as a specialization of

McArdle's (1979). We shall use the Bentler and Weeks (1980) matrix

notation, with minor modifications, in the present discussion.

According to Bentler and Weeks (1980), there are in structural equation

models two basic kinds of variables, independent and dependent

variables. In structural diagrams dependent variables are those variables

to which arrows point from other variables. Independent variables do not

have causal arrows pointing to them. Now, an examination of any structural

diagram such as Figure 4.9 will show that both latent and manifest

exogenous variables (S and x) as well as latent disturbance variables (_)

have no causal arrows pointing to them. They are independent variables.

On the other hand, latent and manifest endogenous variables (11 and y) have
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arrows pointing to them and are therefore dependent variables. We will now

see how this distinction between independent and dependent variables is

made in a matrix notation for structural equation models with manifest and

latent variables.

The "expanded" matrix equation representing the simple 16 variable

model in Figure 4.9 is given in Table 4.1. Dependent variables are

represented in a randam vector * (eta star) that may be partitioned as

Y[ = , y], where V1' is a (transposed) randam subvector of latent

dependent variables and X is a (transposed) random subvector of

manifest dependent variables. (By transposed is meant that the array has

been rearranged so -that rows become columns and columns became rows. For a

single colunn vector, a one dimensional array, transposing this vector

means the column becomes a row of elements-which we do here to make it

convenient to display the vector in the text). The number of latent

dependent variables in V' is indicated by ml; the number of manifest

dependent variables in y' is indicated by _22 . The total number of

dependent variables is indicated by m, where m = in1 + m2 . The order

of V* is thus m x 1.

Insert Table 4.1 about Here

Independent variables are all included in a single random vector A*

(xi star). This vector may be partitioned to distinguish between manifest

and latent exogenous variables and disturbance variables. Thus we may

write 4*' = [ x' ,x ,£], where F' stands for a (transposed) subvector of

latent exogenous variables, x' stands for a (transposed) subvector of
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manifest exogenous variables, and F' stands for a (transposed) subvector

of latent disturbance random variables. The number of latent exogenous

variables included in ' is n1; the number of manifest exogenous

variables in x is n2; and the number of disturbance variables in 6' is
-2 -

equal to m (the number of dependent variables). The number of

independent variables in F* is thus n + n2 + m = n, and so the

order of * is n x 1.

The structural parameters Mij that relate dependent to dependent

variables are included in the square m x m matrix A (alpha). Each row

of A corresponds to one of the dependent variables and contains the

structural parameters of those other dependent variables that are causes of

that dependent variable. The structural parameter in the ith row and

ith column of A thus represents the amount of change in the ith

variable that results from a unit of change in the jth dependent variable.

If the element in the ith row and jth column is a zero, this means that

the jth dependent variable is not a cause of the ith dependent

variable. The elements of the diagonal of A are thus ordinarily zero,

meaning that a dependent variable does not cause itself. In recursive

models the order of the dependent variables can be arranged so that the

A matrix is lower triangular, that is, nothing but zeroes are above the

diagonal of A, implying that a dependent variable only causes other

dependent variables beyond it in their relative order. In nonrecursive

models such as those involving reciprocal causation, the A matrix will

have nonzero but distinct smnmetric-counterpart elements both below and

above the diagonal.

The structural parameters that relate independent to dependent

___________
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variables are contained in the matrix I* (gamma star). The matrix *=

[r:,8] is partitioned into the m x (nI + n2 ) matrix r and the

m x m matrix Ai (delta). The rows of r correspond to the different

dependent variables. The colunns of r correspond to the different

exogenous variables. A zero element in the ith row and kth colunn of r

means that the kth exogenous variable is not a cause of the ith

variable. In the present example f is a 14 x 2 submatrix. A contains the

structural parameters relating the dependent variables to their respective

disturbance variables. The rows of A thus also correspond to the different

dependent variables while the colunns of A correspond to the different

disturbance variables. Normally is a diagonal matrix (sometimes even an

identity matrix) with zeros everywhere except in the principal diagonal.

That A is a diagonal matrix reflects the fact that each dependent variable

is directly associated with a different disturbance variable. Thus 6ii is

the structural parameter relating the ith variable to its corresponding

disturbance variable. In the present example A is a 14 x 14 matrix.

Insert Table 4.2 about Here

W have sumnarized the notation we will use in Table 4.2. Let us now

turn to a more compact form for the general matrix formulation of the

linear structural equation model with latent and manifest variables. This

form is given in the general case by:

r = A n+ (4. 2a)

or more simply by
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AY* + r*&* (4.2b)

The dependent variables in * are found on both sides of equations

4.2a and 4.2b. his is not the usual form in which a structural equation

is written. Wiley (1973) recommends the following: Bring the expression

containing the matrix A from the right side over to the left side of the

equation and then factor 1* from the resulting expression to obtain

. A) * = * . If we then define B = (I -A), we may write the

structural equation in the canonical form more like that found in

econometric textbooks

= *4* (4.3)

Note that the diagonal elements of B (beta) must all be unity. The

nonzero off-diagonal elements of B will be the negative values of the

nonzero off-diagonal elements of A. This means that in interpreting the

nature of the causal effects one will have to mentally change the signs of

the beta coefficients in the matrix B. A common mistake is to fail to make

these changes.

-1
If we premultiply both sides of e Aation 4.3 by B we obtain the

"reduced form" of the structural model equation. The reduced-form equation

gives dependent variables totally as functions of independent variables.

The reduced form for equation 4.3 is:

-- =(4.4).

The goal of structural equation models is to show how relationships

among manifest variables (given by either correlations or covariances) can

be explained in terms of the structural equations relating the manifest

variables to other (possibly latent) variables of the model. Tb reach this

goal we will need certain "selection" equations that "select" the manifest
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variables in the subvectors y and x, respectively, from the larger vectors,

?p and E*, of variables (Bentler & Weeks, 1980). Cbnsider the following

selection equations:

y=(0: 1]FYand x = [0:I:0]r'1 (4.5a)

or

y = Gfl and x=G(4.5b)

G = [0:1] is a partitioned (m2 x m) "selection" matrix with 0 an

E!2 x m1 null matrix and I an m 2 xr_2 identity matrix. In other

words, G contains zero elements everywhere except for a single element of

unity in each row placed in the appropriate column of G to "select" a-y

corresponding manifest dependent y variable from V. Similarly, Gx =

[0:1:0] is an (n2 x n) selection matrix with the first 0 on the left an

null matrix, I an n x n2  identity matrix, and the 0 on

the right an n2 x m null matrix. In other words, Gx contains zero

elements everywhere except for a single element of unity in each row placed

in the appropriate column of G to select a corresponding manifest

independent x variable from * To illustrate, for the model in Figure 4.9,

G y is a 12 x 14 matrix with O's for every element except for a single 1 in

each row in the column corresponding to a manifest endogenous variable Yi

in1*. Similarly, Gx is a 1 x 16 matrix [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

with unity corresponding to the manifest exogenous variable x2 in the

vector =

We also need to define a matrix reflecting the variances and

covariances among the independent variables of the model. As explained

above all independent variables are included in the random vectort*. Thus,



152

the matrix of variances and covariances among the independent variables is

given by the matrix

1= E(*Y) (4.6)

where 0 is the Greek letter phi. The model requires that exogenous

variables are independent of disturbance variables (i.e., the model is

self-contained). This requirement is expressed mathematically by the

requirement that El S [' :x'] } = 0, where E( ) is the expectation operator.

The effect of this requirement appears in the matrix and may be seen in a

partitioning of this matrix as

- - x 2
= P 0-xx (4.7)

where $ =E( ), x = E(Ex'), xx E(xx') and * E(c').

The following terms are set equal to zero in Eq. 4.7: 4F , XS'

t~t, and -Ex

Fran the reduced-form Sg. 4.4, the selection equations Eq. 4.5 and

Eq. 4.6, we are able to derive the variance-covariance matrix E0 . E0

contains the "predicted" variances and covariances among the manifest

variables, where by "predicted" is meant that the variances and covariances

take on the values they would have if they were generated as functions of

the structural parameters of a hypothetical structural equation model. The

matrix equations which display Z0 as functions of structural parameters

and covariances among independent variables are as follows:

'0 = (4.8)

L;xy Lxx
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where, according to the model,
iyy = yr G B-I*0*'B-G ', (4.9a)

.. = .-y- -- -- y
= = G r*'B-'G y', (4.9b)-Zxy-x--- -y(.b

-xx = E(xx') = XG I' (4.9c)

The implications of Eq. 4.8 and Eqs. 4.9a,b,c are that a predicted

or hypothetical variance covariance matrix E 0 for the set of observed

variables in random vectors x and y may be derived from the parameter

values of a hypothetical structural equation model. Therefore, the degree

to which the hypothetical structural equation model reflects reality is

given by the degree to which the hypothetical matrix Z is the same as

the empirical variance-covariance matrix E for the same variables (in x and

y) obtained from measurements of these variables in the world. 7b make

this comparison between the hypothetical matrix E0 and the empirical

matrix 1 is the goal of a confirmatory analysis using structural equation

models with latent and manifest variables.

Specifying a Structural Model

One can obtain different models for the same set of manifest and

latent variables in 4* and 7* by assigning different values to the

respective elements of the matrices B, r*, and 0, known as "parameter

matrices", in the structural equation model. In other words, to define a

structural equation model with observed and latent variables one must

specify the nature of the elements of the parameter matrices of the model.

Any particular element of these matrices may be specified [to use

terminology popularized by J8reskog (1973)] in one of three ways:

(1) As a fixed parameter, given a value specified prior to the
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analysis which does not change throughout the estimation process.

(2) As a free parameter, whose value is to be estimated from the

data conditional on the values of fixed and constrained parameters

in the model.

(3) As a constrained parameter, whose value is yoked together with

certain other parameters that are all constrained to equal the

same value. This value may be free to be estimated conditional

on the values of fixed and other sets of constrained parameters.

Specification of a structural model is tied intrinsically to the question

of identification. Consequently, we shall discuss identification and then

illustrate its application in regard to the model in Figure 4.9.

Identification. It is essential to specify a structural equation

model in such a way that the model is identified. Whether a model is

identified concerns, in the broadest sense, distinguishing one theory from

another theory when operationalizing theory with data (L'Esperance, 1972).

With structural equation models, identifying a model involves specifying a

priori, according to theory, the fixed values of certain parameters of the

model so that (a) no other theoretical model (except one that differs

trivially from it in terms of different units of measurement) can have the

same fixed parameter values, but different free parameter values, and (b)

still generate the same hypothetical covariance matrix -:0 for the

observed variables. In other words, identifying a structural model means

fixing the values of an appropriate set of parameters in the model so that

the hypothetical covariance matrix Z0 associated with this set of fixed

parameters will be unique for each distinct conplementary set of free

parameter values.
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Identification also concerns fixing enough parameters of the

parameter matrices B, r *, and 4 so that the remaining parameters can then

be solved for in terms of the values of the covariances among the manifest

variables and the values of the fixed parameters. If an insufficient

number and/or inappropriate set of parameters are fixed a priori, the

model may not be identified. Then there may be no consistent solutions for

the free parameters of the model. In tl s regard J8reskog (1979) has

indicated the following guidelines for evaluating the indentification of

one's model: Let s be the number of free and constrained parameters

(each distinct constrained parameter being counted only once) in the

matrices B, r* and 4. Then a necessary (but not sufficient) condition that

all of the free and constrained parameters of the model are identified is

that

s < (n +n 2)(m2 +n 2 + 1)/2

where the expression on the right is the number of independent elements of

the hypothetical variance-covariance matrix-Z0 for the full set of

observed variables, with nx variables and 2 y variables.

Th understand the way identification of a free or constrained

parameter may be determined by some elements of the hypothetical covariance

matrix Z-0 and the values of the fixed parameters, let us return to

Eqs. 4.9a through 4.9c. These equations imply that the elements of the

variance-covariance matrix 1:0 are functions of the values of the fixed

and free parameters in the parameter matrices of the model. If one can

find a way to solve uniquely for a given free or constrained parameter from

elements of the variance-covariance matrix Z 0 and the values of the fixed

-oJ
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parameters, then the free or constrained parameter is identified. If

there is only one way of using elements of -Z0 to solve for a given free

or constrained parameter, then the parameter is just identified. If

there is more than one way (using different elements of SO) to solve for

the parameter, then the parameter is overidentified. If all free and

constrained parameters are just identified, then the model is just

identified. If in addition some, but not all, of the free and constrained

parameters are overidentified, then the model is partially overidentified.

If all free and constrained parameters of the model are overidentified,

then the model is overidentified. Finally, applying the term "identified"

to a model implies that the model is at least just identified.

7b illustrate identification, let us consider the identification of the

parameters of the model in Figure 4.9 represented by the system of

simultaneous equations in Eq. 4.1. We assume that in the phi matrix for the

model in Figure 4.9 the exogenous variables are mutually uncorrelated with

unit variances and that the disturbance variables are also mutually

uncorrelated; that is, CEi and 4x% are identity matrices, tr = 0, and

U is a diagonal matrix. We may then derive the elements of the

hypothetical variance-covariance matrix for the observed variables by Eqs.

4.9a through 4.9c. Actually, one does not need in practice to use Eqs. 4.9a

through 4.9c per se to find the variances and covariances among the

manifest variables according to the model. one can also use processes

similar to those discussed in connection with Condition 10 in Section 2 to

express correlations in terms of path coefficients. These processes involve

rules one can apply to the parameters in structural diagrams to determine the

variances and covariances in a rather straightforward way (cf. Costner,
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1969; Heise, 1975; Namboodiri et al., 1975). To illustrate these

procedures for finding covariances, consider that part of the model in Figure

4.9 that deals with causes of y,3'""-Y6 ' which we have reproduced in

Figure 4.10.

Insert Figure 4.10 about here

This submodel implies that the covariance between and 4 is

equal to _ 31'41_i 2, where _Ti is the variance of T_1.

The basis for this implication is that Y3 and Y4 have the latent

variable 7i as a common cause. Thus, their covariance, indicated by

-734' should be determined by the extent to which they share common

variance attributable to Yl1, which is given by multiplying the product of

the parameters relating Y3 and Y4 to Yi times the variance of

However, for simplification we will require that the variances of

all latent endogenous variables equal unity. Hence, using the same reasoning,

the complete set of covariances among the manifest indicators of -li is:

04  ( 1 (4.10)34 -31-41
93 5  ' -'(51 4.11)

36 - -1 %1 (4.12)

045 241%1 (4.13)

46 -1-1 (4.14)

o56 = -I1i (4.15)

We may also obtain these same results by applying Bjs. 4.9a through

4.9c %here we can take advantage of the fact that the fixed parameters set

equal to zero in B I - A, r*, and 4 allow us to simplify expressions for
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these same covariances as in Eqs. 4.10 through 4.15. In any case, however

we obtain them, we have six equations and four unknowns, namely -31' -il'

-51 and _%,- This means we may solve this system of six equations in

more than one way to obtain estimates of M31' " a 61" one solution

for these parameters is given by:

M31 = +( a35 a 4 5 ) 1/ 2  (4.16)

q41 = (3 4945/53 5)I/2 (4.17)

-51 = +( 3 5 4 5 / 3 4 )1 /2  (4.18)

61 -+( 3 694 6/934 )1/2 
(4.19)

But Eqs. 4.16 through 4.19 do not represent the only possible solution for

the unknown parameters -31' - -961" Parameters M'31 through % 61 are

overidentified-because there is more than one way to solve for each of the

four unknown parameters in terms of different elements of Z0 . For example,

we used Eqs. 4.10, 4.11 and 4.13 to obtain the solution for -631 in Eq.

4.16. But we could just as easily have used Eqs. 4.11, 4.12 and 4.15,

respectively, to solve for M31 as

-'31 = +(-73 593 6/ 5 6)1/
2  (4.20)

Thus M 31 is an overidentifed parameter, as are the other unknown parameters

of this system of equations.

By similar procedures we can solve for parameters -72' ""-' 0,2
in connection with the four indicators of V)2 and for parameters Y

-2 -11,1

"'' K14,1 in connection with the four indicators of l* Because in

each of these cases there are four indicators of a common latent variable,

the structural parameters relating these indicators to the common latent

variable are overidentified.
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The free parameter!?,, relating 7i to _1 is also an over-

identified parameter. To see this consider that the covariances between

different pairs of manifest indicators of different latent variables may be

obtained as the products of structural parameters in causal paths that

radiate out from a single latent variable and terminate at each end with one

of the manifest indicators (see Figure 4.11). Thus, applying this principle

to the causal paths involving the parameter 921 , we obtain

7 -1 1'-2 (4.21)

= -(4.22)-38 O3lAl82

939 = '-1 -l92 (4.23)

%3,10 -- %l1l%0,2 (4.24)

Any one of these equations, as well as others involving covariances for pairs

of variables from other sets of indicators of 1 and 2 respectively, may

be used to solve for -21' because the solutions for the other parameters

in each of these equations are obtainable using other elements of S

Parameter M. is therefore very much overidentified. By similar
-21

reasoning we can show that ' and -1 are also overidentified. For-11 -12

example, - Y 1 ' and so on.-x2Y3  1231 -x2 y4  -12-41

a. and %1 are already determined by other elements of -
-31 -41 '-0

Insert Figure 4.11 about Here

The structural parameters 633 through -14,14 associated with the

causal paths of disturbance variables e-3 through -14 of Figure 4.9 are

identified, for they may be determined from the respective diagonal

elements of-E 0 once the other parameters of the model have been
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determined from the off-diagonal elements of Z . That is, the values

estimated for 3 through -l4,4 will reflect the residual variances

in variables that cannot be accounted for by the functions indicated in

the model.

The structural parameters 11 and -22 associated with the paths

of the disturbance variables - and E for the latent endogenous
-2

variables n-i and J2' will not be identified unless one makes some

specification before analysis that, in effect, specifies the variances of

the latent endogenous variables and r We have already required

the variances of latent endogenous variables to equal unity; in other words,

we require the following equalities to hold:

2 - 2 + Y 2 + y 1 2 = 1 (4.25)

1 -11 -12

2 22 + M2 = 1 (4.26)

-n2 -22 -21 1

These equalities properly constrain solutions for 11 and 6 22 Some

computing algorithms for structural equation analysis provide for

specifying constraints among parameters such as these (Bentler and Lee, 1982).

When they do not, the user must specify arbitrary values for the parameters

to fix the metric of their respective latent endogenous variables.

In sum, because all parameters not involving disturbances of the model

in Figure 4.9 are overidentified, the model may be said to be overidentified.

It is important to empjhasize that the free parameters of the model are

just identified or overidentified depending on the assumptions

(predictions) made in specifying values for the fixed parameters. It may

not be obvious, but the model in Figure 4.9 involves a large number of
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fixed parameters. For example, the absence of an arrow from - t 2

means that the parameters Y21 is equal to, or fixed, at zero. The same

is true for the absence of an arrow from x2 to -2" Furthermore, every

disturbance variable is regarded as a cause of one and only one manifest or

latent endogenous variable. All arrows emitting from a disturbance to any

other variable have parameters fixed at zero (i.e. off-diagonal elements

of A must be zero). Furthermore the disturbance variables are presumed to

have unit variances and to be mutually uncorrelated, with their covariance

matrix leg fixed to be an identity matrix. Two other instances, which do

not exhaust all possibilities, are that (a) manifest indicators of latent

variables are caused by one and only one latent variable, and (b) the

causal relationship between 1l and 1-2 is recursive, implying that -1

= 0, (i.e. -n2 is not a reciprocal cause of Dl). Finally, the model

contains no constrained-equal parameters, although this condition could be

implemented if we so desired. For example, we might theorize that M31

and t41 in EL. (4.11) are of equal magnitude. one result of this

specification would be that the parameter M is overidentified (i.e.,

one would have, in effect, two unknowns in three equations).

Implications of identification for testing goodness of fit. As

discussed earlier, the degree to which a structural equation model reflects

reality is assessed by the degree to which , the hypothetical variance-

covariance matrix generated according to Ecls. 4.9a through 4.9c, is similar

to, or has a good fit with, the matrix E, which is the unrestricted,

empirical variance-covariance matrix for the same manifest variables. In

practice, 0 and are replaced by sample estimates, namely Z0 and
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respectively. Identification has important implications for testing the fit

between 0 and S. Consider, first, that there is only one possible solution

for the estimate of a just identified structural parameter. This suggests

that estimates for the free and constrained parameters of a just identified

model can always be found in such a way that the resulting- 0 matrix

exactly equals the matrix S. Just identified models always have a perfect

fit to data. But such good fits are tautological and trivial, and in no way

indicate the scientific usefulness of a model. On the other hand, because an

overidentified parameter of a model may be estimated in several ways (using

different sets of elements of the sample variance-covariance matrix S),

different estimated values for the parameter can be obtained. more

importantly, the different estimates for an overidentified parameter may be

inconsistent (Costner, 1969). In practice, the methods used to estimate an

overidentified free or constrained parameter usually take some weighted

average of the different solutions for the parameter. As a result, there is

some freedan for the sample variance-covariance matrix S to differ from the

estimated hypothetical variance-covariance matrix -0 Thus,

overidentified models can be falsified when the discrepancy between S and

is statistically significant. It follows that an overidentified

model is essential for testing the theory on which the identifying

conditions are based.

Since structural equation models with latent variables are a bit more

camplex than those involving only manifest variables, the task of assessing

identification is more difficult. Furthermore, because the emphasis is on

fixed parameters of the various parameter matrices of the model (essential

for the camputing algorithms), the identification problem focuses on

--
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parameters and not equations as does the traditional literature on

structural equation modeling with manifest variables. one can consult

Fisher (1966), Schmidt (1976), Wiley (1973), Werts, J~reskog, and Linn

(1973), or Koopmans and Hood (1953) for general principles of

identification. Empirical examples are given by J8reskog (1979a, 1979b).

Estimation.

Basic principles. In the case of structural models with latent

variables, we make the assumption that the distribution of the manifest

variables is a function of their variance-covariance matrix. Making this

assumption allows us to seek estimates of the free and constrained

parameters of the model in the following way: Use as estimates those values

for the free and constrained parameters of the matrices B,I-*, and P that

together with the values of the fixed parameters make the estimated model

variance-covariance matrix Z for the manifest variables as much-0
like the sample variance-covariance matrix S as possible. We will now show

how this principle is implemented in the major methods used to estimate

parameters of structural equation models with latent and manifest variables.

A measure of the degree of similarity or fit of the matrix -0
to the matrix S is given by a function of the elements of these matrices

known as a loss function. The term "loss function" is derived from the

idea that when estimating a parameter one takes a "loss" when the value

chosen as an estimate of the parameter differs frm the actual value of the

parameter. The loss function thus provides a measure of the degree of this

loss by measuring some function of the discrepancy between estimate and

parameter. A desirable property of a loss function is that it should take

|
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on a large value when the discrepancy between the estimate and the parameter

estimated is large and equal zero when there is no discrepancy. In

addition, when a number of parameters are to be estimated, the loss fur.ction

should attempt to combine the individual losses into an overall measure of

loss. In the case of structural models with latent variables, we will seek

estimates for the free parameters of the structural model so that the

estimated variance-covariance matrix 0 derived from these free

parameters and the fixed parameters will minimize a loss function defined on

Z0 and S.

Important methods. A number of loss functions are available for this

purpose. To begin with, one can use least squares (LS) and minimize the

function

IS tr[(s - 1o)'( -~ -_£) I

This method of estimation minimizes the sun of squared differences between the

elements of S and E• The matrix (S - 0) represents the element-by-
0 -00

element difference between S and _Z0•  0 is derived using Eqs. 4.9a

through 4.9c with estimated values for the free and constrained elements and

a priori values for the fixed elements of the matrices B, I*, and . The sun

of squared differences between the elements of the corresponding rows of

(S ) is given by the diagonal elements of (S - (0 )'(S - &), a square matrix.

The sun of the diagonal elements of a square matrix is known as the trace

of the matrix and is denoted by tr[ ]. Thus the sun of the diagonal

elements of (S- .O)'(S- or the trace of this matrix,

gives the sum of squared differences between corresponding elements of S and

In other wrds, the criterion would force us to seek values of
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the free and constrained elements that would make the sum of squared

differences between the elements of the matrices S and L0 as small

as possible. Note, however, the term "least squares estimation" in this

case does not refer to the ordinary least squares estimation process used

with models of manifest variables.

Maximum likelihood estimation begins with a sample from a population

whose distributional type is known (e.g. the multivariate normal

distribution) and seeks those values for the unknown parameters of the

distribution that would make the likelihood of obtaining the sample a

maximum. If we used the loss function of maximum likelihood estimation, we

would seek to minimize the function

ML = logI oI + tr(SZ-1 ) - logISI - (m2 + n2 )

which approaches zero as S and Z0 become the same. logl 0 t

denotes the logorithm of the determinant of the square matrix 0*

The determinant is a number obtained from the elements of the matrix in a

way too complex to describe here. Note that if S and 1 0 are equal, then

logZ 01 and logISI will be the same and their difference will be

equal to zero. Similarly if S and Z0 are the same, i will be the

matrix inverse of S. Hence, (Sj0-1) = I, an identity matrix,

whose diagonal elements are all unities, the sum of which, given by

the trace function, equals (m2 + 02) , the number of manifest variables.

Thus, the difference between tr(S -1) and (i 2 + a2) will

equal zero in this case. When ML equals zero, it is at an absolute minimum.

This absolute minimum is never attained when S andZ 0 are different,

but it may be possible to find estimates for the free and constrained
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elements of B, I, and t that make -0 as much like -S as possible

according to this criterion.

Or one can use the loss function of generalized least squares, in which

case one would minimize

GLS = tr(I - S- I £0)2
As explained previously S-0 will be an identity matrix (I) when

S and E are identical. Hence the GLS criterion also approaches zero-- 0

as S and L0 became the same.

An advantage of the least squares (LS) method of estimation is that it

may be implemented without making any distributional assumptions about the

observed variables. On the other hand, the least squares method of

estimation does not lend itself to testing the statistical significance of

differences indicated by the trace function. In contrast, statistical tests

are possible with the maximum likelihood and the generalized least squares

methods. Tb use statistical tests with the maximum likelihood method, the

distribution of the manifest variables should follow the multivariate normal

distribution. If this assumption is questionable, then the generalized

least squares (GLS) procedure may be used. Generalized least squares also

makes no distributional assumptions, but still allows for statistical tests.

Finally, it is extremely important to note that statistical inference based

on maximum likelihood and generalized least squares estimates is possible

only with large samples. One reason for requiring large samples is that the

chi square statistics used to test the significance of the maximum

likelihood and generalized least squares loss functions are only

asymptotically distributed as chi square. That is to say, the sampling

distributions of these chi square statistics only approximate chi square

IWO
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distributions in large 
samples.

The algorithmic procedures for obtaining estimates for the free and

constrained elements of the linear structural equation model with latent

variables are beyond the scope of this treatnent (cf. Jreskog, 1973;

Bentler & Weeks, 1980). Cne should know, however, that the procedures are

iterative and quite time-consuming, even with large, high-speed computers,

and may require considerable core memory as well. These procedures

estimate all of the unknown (free and constrained) elements of the matrices

B, f* and 0 at the same time. This means that lack of fit between data and

a model can be spread across all parameter estimates to force an optimal

fit. The result is a tendency to obscure which fixed elements are mainly

responsible for the lack of fit of the model to data. This is a common

problem for all "full-information" estimation techniques; that is,

techniques that estimate all free and constrained parameters in a model

simultaneously (cf. Johnston, 1972). On the other hand, if the conditions

for confirmatory analysis have been reasonably satisfied, then the estimates

furnished by full-information techniques are both consistent and efficient.

Unfortunately, applications of latent variable structural modeling in

ps=hcology, like those for manifest variables, tend to be extremely weak in

regard to attention to the conditions essential for confirmatory analysis,

especially in connection with the unmeasured variables problem (Cliff, Note

1). We will discuss these points later in this section.

Computer programs. A number of computer programs are available for

canputing the estimates of the parameters of structural equation models.

The program LISREL IV prepared by J8reskog and S5rbam (1978) is perhaps

the most widely availdble program at this time for structural models with
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latent variables. However, its use of the notational distinction between

the measurement model and the structural equation model is unnecessary and

leads to difficulties in treating the case where a manifest variable is

regarded as simultaneously an effect of both latent endogenous and latent

exogenous variables. Furthermore, in estimating variances of disturbance

variables, LISREL IV frequently produces "Heywood" cases where the variance

estimates are negative. However, a program that implements the structural

equation model used in this book would not have Heywood cases when

estimating the variances of the disturbance variables, for these could be

fixed arbitrarily to unity. The relative contribution of a disturbance

variable 6. would then be indicated by the square of the structural-1

parameter 6,, which is unaffected by the sign of 8... COSAN, a program

informally distributed by R. P. McDonald based on a general model for

covariance structure modeling (McDonald, 1978), can be easily used with the

notation used in this book. COSAN has the additional feature of permitting

both maximum-likelihood and generalized least squares solutions for

parameter estimates. Bentler is also developing a program to implement the

model of Bentler and Weeks (1980), which should be readily adaptable to the

notation of this book. At this writing J8reskog and S8rban (1981) have

just released version V of the LISREL program. J8reskog states (personal

conmunication) that LISREL V will be distributed to replace all versions of

LISREL IV now in use. Although LISREL V still does not provide for

generalized least squares estimation and adheres to the model equation of

LISREL IV with attendant problems with Heywood cases in estimation of

variances of disturbance terms, the main improvement has been a 10-fold

reduction in computing time required to obtain maximum likelihood estimates
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of the free parameters of a structural equation model. This has been

brought about through the use of an improved aproach to determining

initial values for estimates of the parameters from which to begin the

iterative process. The improvement in computing speed should make LISREL V

very popular in spite of the minor difficulties we have mentioned.

We continue now with the question of significance tests for the

goodness of fit between 2 and Z0 using S and Eo0

Significance Testing and Goodness of Fit Tests.

Testing the support for a model. Previously in connection with

Conditions 9 and 10 in Section 2 we discussed how to evaluate the empirical

support for a confirmatory model based on manifest variables. Condition 9,

we said, concerns testing whether certain causal parameters are different

from zero. It was pointed out that causal relations are indicated by

nonzero structural parameters in structural equations. Thus, empirical

support for causal relationships is given by statistical tests that reveal

that the corresponding estimates of free structural parameters differ

significantly from zero. Condition 10, on the other hand, concerned the

fit of a model to data. This, we pointed out, can be assessed by taking

advantage of the fact that the estimated and fixed structural parameters of

a structural equation model determine an estimate of a hypothetical

variance-covariance (correlation) matrix for the manifest variables under

the assumption that the model is valid. If the estimate of the

hypothetical variance-covariance matrix derived from the fixed and

estimated free parameters of the structural equations does not differ

significantly from the observed (unrestricted) estimate of the

... .. .. .ll. ................. .....



t

170

variance-covariance matrix for the manifest variables, then we say that the

model fits or is consistent with the data.

In the case of structural equation models with latent variables, we

can perform tests to determine whether both Conditions 9 and 10 are

satisfied. However, how one performs these tests will be constrained by

the kinds of statistical tests that are possible with latent variable

models. As described briefly above, all of the available algorithms for

estimating the free parameters of a structural equation model use

full-information methods of estimation. iis means all free and

constrained parameters of the model are estimated simultaneously. These

full-information algorithms usually provide three kinds of statistical

tests to test hypotheses about the parameters of a model: (a) confidence

interval tests applied to estimates of individual free parameters of the

model, (b) tests comparing nested models, and (c) tests of overall goodness

of fit of Z 0 to S. The first two ways of testing statistical

hypotheses lend themselves to methods for assessing whether Condition 9 is

satisfied, that is, whether certain free structural parameters are equal to

zero or not. The third way provides a basis for assessing whether

Condition 10 concerning the goodness of fit of the model to data is

satisfied. However, ways (b) and (c) are special cases of the same chi

square goodness-of-fit test and will be discussed together, although they

concern different substantive questions.

Tests of individual parameters. The latent variable literature

contains little information about the use of confidence intervals to test

hypotheses about individual free parameters. Nevertheless, confidence

interval tests are possible if parameter estimates are obtained by either
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full-information maximu-likelihood or generalized least-squares

estimation. The tests are based on estimates of the standard errors of the

free parameter estimates derived from the "information matrix", which is

generated as a byproduct of the estimation algorithm (cf. Bentler & Weeks,

1980; J~reskog, 1973). The standard errors for the free parameter

estimates, however, are conditional standard errors; they are conditional

on the fixed and constrained parameters of the model. Thus, confidence

interval tests of whether free parameters associated with expected causal

pathways differ significantly from zero will be meaningful and unbiased

only if the specifications regarding fixed and constrained parameters have

been determined to have an acceptable goodness of fit to the data. In any

case, one has estimates of standard errors and consequently confidence

interval tests for just those free parameters of interest when assessing

satisfaction of Condition 9.

The application of these confidence interval significance tests should

be straightforward. For each free parameter of the model one can construct

a confidence interval around the estimate of the parameter using the

estimate of the standard error of the parameter. If the confidence

interval does not include zero, then one can conclude that the parameter

differs significantly from zero, thereby indicating a causal connection

between the variables in question.

However, when the researcher seeks to test hypotheses about a number

of different parameters of the model with a series of tests (i.e. one test

per free parameter), he or she may want to control for the probability of

making at least one Type I error of incorrectly rejecting a null hypothesis

when it is true, over the series of tests. 71o do this the researcher will
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have to have a way to compute this probability. This can be done exactly

if one knows the tests are mutually independent and the level of

significance of each test. But in most situations one will have a series

of tests of parameters estimated from a single sample, and the tests will

not be mutually independent. It follows that the conditional probability

of making a Type I error on a test given one has already made a Type I

error on a previous test will not be given by the nominal level of

significance used for the test. A number of general procedures are

available for dealing with this situation, many of which revolve around the

Bonferroni method of defining more stringent levels of significance for

individual tests of significance. These procedures, which are reviewed in

Larzelere and Milaik (1977) and Stavig (1981), have the major drawback of

being less powerful than procedures that involve a series of tests known to

be statistically independent. Nevertheless, power may not be a major

concern with the large samples required for goodness-of-fit testing with

the latent variable methods . The alternative to using confidence

intervals for testing hypotheses about individual parameters is based on

the overall goodness-of-fit tests. We will first describe the

goodness-of-fit test and then return to the alternative procedure for

testing individual parameters. (Before departing from this point, we

should mention that the logic described above for controlling for Type I

errors in latent variable models applies also to manifest variable models).

Goodness-of-Fit Tests. After one has obtained maximum likelihood

estimates of the free and constrained parameters, he or she can then
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generate the estimated model variance-covariance matrix and

compare this for goodness of fit with the sample variance-covariance

matrix S estimated in the usual way under no restrictions. Tb do this

one can compute the statistic

F=N [logX ,I - logISI + tr(SZ - (m2 + n2 )/2-- 2)

which, when the sample size N is very large, is approximately distributed

as chi square with (m2 + n2) (m2 + n2 + 1)/2 - s degrees of freedom.

s is the number of independent free and distinct constrained parameters

of the model. If the sample value of this statistic exceeds the critical

value of chi square with the respective degrees of freedom at the specified

level of significance, the model is rejected for lack of fit to the data.

However, one must keep in mind that this test actually concerns a test of

the appropriateness of the values chosen for the parameters fixed to

specify the model. That is to say, the statistical hypothesis tested by

the overall goodness-of-fit test is that the fixed parameters' values are

what they have been fixed to. The test does not test hypotheses about the

free parameters of the model; these have been estimated in such a wy as to

make the fit of the model to the data as close as possible, conditional on

the values of the fixed parameters. And so, any lack of fit will be a

result of the fixed parameter values and not the free parameters. Thus, if

the test yields a significant goodness-of-fit statistic, one then must

consider that Condition 10 is noL satisfied, that one's specification of

the model in terms of fixed and constrained parameters is possibly not

correct. Cn the other hand, if the overall goodness-of-fit test statistic

is not significant, it means that Condition 10 is satisfied, that is, the

specification of the model is consistent with the data.

I
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Tests of individual parameters using the F statistic. One can use

the above chi square goodness-of-fit statistic F to test hypotheses about

individual (and even groups of) parameters in a model. Thus, this

statistic can also be used to assess whether Condition 9 concerning

hypotheses about the free parameters of the structural model has been

satisfied. 1b apply the chi square goodness-of-fit statistic F for this

purpose, one must make a comparison between two models: one with the

parameter in question fixed to the hypothesized value, the other a model

that is identical to the first model except that the parameter (or

parameters) in question is (are) free to be estimated. The model with the

value of the parameter(s) fixed by hypothesis will ordinarily yield a

larger chi square statistic than the one with the same parameter(s)

allowed to be free. The difference between these two chi squares is also a

chi square statistic, known as the difference chi square, with degrees of

freedom equal to the difference in degrees of freedom between the original

chi squares. If the difference chi square is significant, one rejects the

null hypothesis about the fixed parameter(s). This approach is illustrated

below.

A priori sequences of tests. Bentler and Bonnet (1980) have recently

reviewed the problem of conducting a series of independent statistical

tests about individual parameters of a structural equation model with

latent variables. The purpose of such a series of tests is not to explore

data, but to test a number of a priori hypotheses in connection with the

parameters of a particular model included within a nested sequence of

models. According to Iby (1978) one can construct a series of independent

statistical tests of indiidual parameters by specifying an a priori
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sequence of nested models whose goodness of fit to the data is to be

tested, beginning first with a test of the goodness of fit of an initial

overidentified model. Each subsequent model to test must differ from the

previous model only in having additional fixed parameters over and beyond

those of the previous model. Each model, therefore, is a specialization of

the previous model in having the previous models' sane fixed parameters as

well as additional ones. once the a priori sequence of models has been

specified, then a sequence of statistical tests is performed as follows:

For such a sequence of models, let Fi and Fi+1 be the chi

square values with degrees of freedom d i and di+, respectively,

for the goodness-of-fit tests of models i and i+l, respectively. Then

the test of the effect of not fixing the additional parameters in the ith

model, as is done in the (i + l)st model, is given by the difference chi
square value F = Fi~l - Fi' which has d = (di+1 - d.) degrees of

freedom. This sequence of tests continues until one rejects the null

hypothesis. 7b go on beyond this point with tests of subsequent models

would be logically inconsistent, because subsequent models would contain

parameter values that had been rejected in some previous test. With such a

series of tests one could test the specification of a model (condition 10)

and then examine the causal connections between variables (condition 9).

(See also the discussion in Mulaik (1972), pp. 411-417 or Larzelere and

Mulaik (1977) for the description of analogous tests in multivariate

step-down regression).

It must be pointed out that to achieve a series of independent

statistical tests with an a priori, nested sequence of models, one

pays the price of being constrained to testing hypotheses about parameters
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in the order in which they are fixed in specifying the nested sequence of

models. Furthermore, because the sequence of statistical tests ends when

a null hypothesis (about the fixed values of one or more parameters) has

been rejected, it is essential to arrange the testing of hypotheses about

parameters in the order of their relative importance.

Thus, in defining a sequence of models so one can test hypotheses

about different parameters of a structural equation model, one will first

test hypotheses about those parameters that, when fixed, specify a

measurement model relating the manifest variables of the model to different

(usually latent) hypothetical construct variables. Next, if the previous

hypotheses are accepted, one will test hypotheses about those parameters

that, when fixed--in addition to the previously fixed values-specify an

overidentified causal structure among the hypothetical construct variables

of the model. Then, if the values of previously fixed parameters are

consistent with the data, one will go on to test whether further fixi[ to

zero the values of the structural parameters linking hypothetical construct

variables to one another is consistent with the data. If so, one will

reject the causal structure among the hypothetical construct variables and

then test whether additionally fixing to zero the structural parameters

relating the manifest indicator variables to the hypothetical construct

variables is consistent with the data. This last test is a test of whether

any structure exists at all among the manifest indicator variables. We

will now illustrate a nested sequence of models in which such a series of

tests may be performed.

A nested sequence of models. 7b illustrate how, in connection with
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the model in Figure 4.9, one may construct a priori a nested sequence of

models, each subsequent model more restricted than the previous, consider the

structural diagrams in Figures 4.12 - 4.16. Figure 4.12 is a diagram of a

just identified model for the 13 manifest variables of the model in Figure

4.9. According to this model, 12 of the 13 manifest variables are dependent

on nine exogenous latent common factor variables plus 12 disturbance

variables. Three of the latent variables, -:i' 1, and 12' correspond

to the same-labelled latent variables of the model in Figure 4.9. The

remaining six latent variables, Z 3 through E 8 (represented in Figure 4.12

by slightly smaller circles than those associated with kl' lDl' and _1)2)

are included only to illustrate a just identified model that contains as a

specialization the more restricted, overidentified model in Figure 4.9. The

thirteenth manifest variable (x2 ) in Figure 4.12 is a perfectly reliable

exogenous variable. Under the assinption that all latent variables are

specified to have unit variances, the number of free parameters to estimate

in this model is 91: (a) 12 structural coefficients relating disturbances to

manifest variables, (b) 45 independent covariances among the 9 latent

exogenous variables and the single manifest exogenous variable x2, (c) the

variance of x2, and (d) 33 structural coefficients relating the 9 latent

exogenous variables to the 12 manifest endogenous variables. Since the

numbe. of free parameters to be estimated (each corresponding to one of the

single or two-headed arrows in the diagram) equals the number of variances

and covariances in the population covariance matrix for the 13 manifest

variables, the model is just identified. The model's covariance matrix E.0
will fit the population covariance matrix Z perfectly.
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Insert Figure 4.12 about Here

Figure 4.13 is a more restricted, over-identified model representing

the model to use to test hypotheses about the specified parameters of the

measurement model portion of the model in Figure 4.9. In this model a causal

structure is specified relating the manifest variables Y3 through Y1 4

to the latent variables A' D1 and !2 of the model in Figure 4.9. But,

in contrast to the latent structural model in Figure 4.9, no causal structure

is specified in Figure 4.13 among the variables &-i' x2 -i and

The model simply allows these variables to be correlated, but in an

unspecified way and indicates this by the double-headed arrows between these

variables in Figure 4.13. The reason the model of Figure 4.13 is a

restriction of the just identified model in Figure 4.12 is because six of the

nine latent exogenous (common factor) variables of the just identified model

have been effectively deleted from the model. This has been accomplished by

specifying that the structural coefficients linking the six latent exogenous

variables with the 12 manifest variables in Figure 4.12 are zero and that the
)

covariances of the six latent variables with the other manifest and latent

exogenous variables are zero also. In other words, nunerous parameters of

the model in Figure 4.12 have been restricted or fixed to equal zero.

Insert Figure 4.13 about Here

A test of the specification of the Zixed parameters of the model in

Figure 4.13 is then given by a comparison of the goodness of fit statistic

obtained for the model in Figure 4.13 to the goodness of fit statistic
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obtained for the just identified model in Figure 4.12 (which is equal to

zero).

Figure 4.14 is a structural equation model developed from the

measurement model in Figure 4.13 by specifying a causal structure among the

variables i x2, -i and _'2- In fact, it is the model described

previously in connection with Figure 4.9. In this case latent exogenous

variable and manifest exogenous variable x are seen to be direct

causes of only _, while is a direct cause of 2" Exogenous

variables -1 and ?i2 are also presumed to be unrelated. The latent

structural model in Figure 4.14 is more restricted than the model in

Figure 4.13. If in Figure 4.14 we allowed -i and x 2 to covary,
and included causal arrows from 91 to Y)2, and from to -!2' then

the resulting model would be no more restricted than the measurement model in

Figure 4.13 and would fit the data as well as the model in Figure 4.13. In

other words, we would then have just as many free parameters to estimate in

the model of Figure 4.14 as we do in the model of Figure 4.13. By fixing

certain parameters equal to zero in the model of Figure 4.14 (a ix2 = 0,

12 = 0 -22 = 0), we have overidentified the structural parameters

associated with causal relationships among the variables -i' x-2 ' and

12" Thus the difference in the goodness of fit between the model in Figure

4.14 and the model in Figure 4.13 is the basis for a test of the parameters

fixed to specify an overidentified causal structure among the exogenous and

latent endogenous variables of the model in Figure 4.9.

Insert Figure 4.14 about Here
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The structural diagram in Figure 4.15 is of an even more restricted

model in which the causal paths between the latent variables of the

previous model in Figure 4.14 have been deleted. In other words, the

structural coefficients associated with causal connections among the latent

variables and the manifest exogenous variable.?_2 in Figure 4.14 have all

been fixed to zero. A conparison of the goodness of fit of this model with the

goodness of fit of the model in Figure 4.14 would be the basis for determining

whether the causal structure between the exogenous and latent endogenous

variables of the model in Figure 4.14 exists or not.

Insert Figure 4.15 about Here

Finally the diagram in Figure 4.16 is of the most restricted model of

all in this sequence. No structure is hypothesized to exist among the

manifest variables. This model we will call the "null model", because it

hypothesizes that the variables are all mutually uncorrelated.

Insert Figure 4.16 about Here

Now, a sequence of statistical tests may be performed as follows:

First compare the just identified model of Figure 4.12 with the more

restricted measurement model in Figure 4.13. The test of the difference

between these two models is given by the chi square test of the goodness of

fit of the model in Figure 4.13 to the data. If one accepts the null

hypothesis (that the model in Figure 4.13 fits the data) , one can then go

on to perform subsequent tests; otherwise, one must stop, since any
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subsequent model would have fixed parameters whose values were already

rejected in testing the first overidentified model.

Given acceptance of the model in Figure 4.13, one can then compare the

model in Figure 4.14 with the model in Figure 4.13. The model in Figure 4.14,

being the more restricted, becomes the null hypothesis. The chi square

statistic to use is the difference between the chi square for the

goodness of fit of the model in Figure 4.14 and the chi square for the

goodness of fit of the model in Figure 4.13. As noted earlier, the degrees

of freedom for the chi square statistic comparing these two models is the

difference in the degrees of freedom between the two goodness-of-fit chi

square statistics. If one rejects the null hypothesis, that is, rejects

the values of the parameters fixed to specify an overidentified structure

among the latent variables, one must stop further statistical testing and

accept the model in Figure 4.13. Acceptance of the model in 4.14 suggests

confirmation of the hypothesis regarding fixed values in the structural part

of the model. That is, FI and x2 are unrelated (q', = 0), and,lX 2

further, neither are direct causes of 2 (-21 = 0f = 0).

on the other hand, if one accepts the null hypothesis (meaning the

model in Figure 4.14 has acceptable fit) , one can then go on and test the

difference between the model in Figure 4.15 and the model in Figure 4.14,

which is equivalent to a test of whether the structural coefficients,

-I' 12' and M-21' representing causal connections among the manifest

exogenous and the latent variables of the model in Figure 4.14, differ

significantly from zero. As before, the chi square statistic to use for

this test is the difference chi square equal to the difference between

.. ....... .... ... . . . . . .. .' ' l ...IZ ; -.. . . . I . . . . .. . . .. . .. I ... .. .. . .. l .. . ... .O I"
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the goodness-of-fit chi square statistics obtained for the models in

Figures 4.14 and 4.15, respectively. The difference chi square has degrees

of freedam equal to the difference between the degrees of freedom of the

two goodness-of-fit chi squares. Again, if the difference chi square test

of the difference between these models is significant, one must stop and

perform no further significance testing. In that case one accepts the

structural model in Figure 4.14.

If the difference chi square test comparing the models in Figures 4.14

and 4.15 is not significant, then one can make one final test. This is a

test of the pathways from the latent variables to the observed variables.

Do their structural parameters all simultaneously equal zero? If they do,

then there should be no strocture among the observed variables. Thus one

would test the difference between the model in Figure 4.15 and the model in

Figure 4.16. (Actually there is the possibility for intermediate models

between the four independent clusters model in Figure 4.15 and the

no-structure-among-variables model in Figure 4.16: One might have a model

in which just the third common factor is eliminated, leaving variables

lly...,1Y14 mutually uncorrelated as well as uncorrelated with the

other manifest variables. A more restricted model would eliminate the

second and third factors, leaving the last nine variables mutually

uncorrelated as well as uncorrelated with the first three variables, which

are assumed to have a single common factor) . As before, one performs a chi

square test based on the difference between the goodness-of-fit chi

squares of the models in Figures 4.15 and 4.16, respectively. If one

rejects the null hypothesis (that the no-structure model in Figure 4.16

is correct) , one accepts the previous model of Figure 4.15.
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The Normed Fit Index. There is one serious drawback to the use cf

the chi square goodness-of-fit statistic. Just at that point where the

sample size becomes large enough so that the goodness-of-fit statistic

becomes distributed with reasonable approximation to the chi square

distribution, it also has sufficient power to detect even minute

departures of the data from the model. One will find with real-world data

that he or she rejects the fit of the model almost every time, even when

an examination of the residual matrix (S - ) reveals most elements

of this matrix are small in magnitude. On the other hand, Bentler and

Bonnett (1980) point out that if one uses this statistic with small

samples, he or she will almost always accept the fit of a model to the

data for almost any model. Consequently, one would hope to find a way of

assessing how well the model captures most of the information in the

sample covariance matrix that is independent of sample size.

Bentler and Bonnet (1980) proposed an index they call the normed fit

index. This index gives the relative decrease in lack of fit between

two nested models, one less restricted than the other. The decrease in

lack of fit in going from the more restricted to the less restricted model

is compared to a norm. This norm is defined on a nested sequence of

increasingly less restricted models that begins with a most restricted

"null" model, is followed by the original two nested models, and ends with

a just identified model. The norm for comparison is the decrease in lack

of fit in going from the "most restricted" model at one end of the

sequence to a just identified model (which necessarily has no lack of fit)

at the other end of the sequence. The most restricted model at the most
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restricted end of the sequence would fix all free parameters not fixed in

the other models in the nested sequence. In many (but not all) instances

the most restricted model is the "null" model that predicts no relations

between any of the manifest variables. In other words, under this most

restricted "null" model, the variance-covariance matrix of the observed

variables would be hypothesized to be a diagonal matrix, with all off

diagonal elements equal to zero.

For example, consider the nested sequence of models in going from the

model in Figure 4.16 down to the model in Figure 4.12. The model in

Figure 4.16 is the "null" model of this sequence. Figure 4.12 displays

the just identified model. The difference in lack of fit between the null

model in Figure 4.16 and the just identified model in Figure 4.12

represents the maximun possible difference in lack of fit between any two

models in this sequence of nested models. And so, we can use this maximun

possible difference in lack of fit as a norm against which the difference

in lack of fit between any two models within the sequence can be compared.

In testing the fit of the null model, the goodness-of-fit statistic is

denoted F and is based on a comparison of the differences between the

zero covariances of the null model and the actually observed covariances

in the sample covariance matrix S. Now, designate the most restricted

"null" model _no- From the pair of models in question let M1

denote the least restricted model, that is, the model that has the

fewest fixed parameters (and yet is still overidentified). Let Mk
denote a more restricted submodel of MI, in that has not only

the same fixed parameters of M, but other fixed parameters as well,

meaning it has fewer free parameters to estimate. Then the normed fit
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index is given by

k1 (k -fl) EO (4.27)

where F is any fit function (LS, ML, GLS) evaluated for the respective

models. (The index works with any method of estimation using a fit

function which is to be minimized conditional on the fixed parameter

values and which takes the value of zero when fit is perfect. Even the

LS fit function can be used since probabilistic inference will not be

involved in the use of the normed fit index).

Now, a special case of the index given in Eq. 4.27 would be a

comparison of the lack of fit of a given model to the lack of

fit of the null model M0 which is given by

(F F) IF(4.28)01 : - -Z-0

If this index is close to unity, then the model has captured

most of the information about relationships between the observed variables

as given in the sample variance-covariance matrix. This index may be used

even if the goodness-of-fit test for k using the chi-square statistic

is significant, meaning a statistical lack of fit. In other words, the

normed fit index provides a nonstatistical assessment of the adequacy of a

model's fit to data, which may be used to determine whether, on practical

grounds, a model may be of value in describing a particular set of data.

However, a drawback of the normed fit index is that the index takes

no account of the reduction in degrees of freedom in going from the null

model to the model whose fit is being assessed. For example, a just

identified model with zero degrees of freedom would have a normed fit

index of unity. And a barely overidentified model with just a few degrees

of freedom relative to the degrees of freedom of the null model would
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typically have a normed fit index of near unity. Cne must ask how

efficient is the increase in fit in going from the null model with many

degrees of freedom to another model with just a few degrees of freedom in

terms of the degrees of freedom lost in estimating more parameters?

Khattab and Hocevar (1982) recommend the efficiency index

= (F - F -dk)] (4.29)

which represents the per parameter (or degree of freedom) average increase

in fit, where d are the degrees of freedom of the null model, dk

are the degrees of freedom of the model Mk whose fit to the data is to

be assessed, and F and F are defined as before.

However, the efficiency index in (4.29) is not useful for making

comparisons between models in general. ne would like to consider how

well a model fits data in terms of the parsimony of the model. The

parsimony of a model is indicated by the ratio of the number of degrees of

freedom in the model to the number of degrees of freedom available in the

data as indicated by the degrees of freedom of the null model for that

data. When this ratio is unity then all information in the data available

for testing the null model is also available for testing the alternative

model in question. No information is wasted on estimating parameters.

For example, consider two models, M1 and M2 . Let M1 be a

model applied to 10 variables, while M2 is applied to 30 variables.

The number of degrees of freedom d1 in the null model for the 10

variable case is (10 x 11)/2 - 10 = 45. The number of degrees of freedom

d for the null model of the case with 30 variables is (30 x 31)/2 -

30 = 435. Suppose the degrees of freedom d of the 10 variable model

M, is 35. Suppose the degrees of freedom d of 'he model M
=2 -2
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typically have a normed fit index of near unity. One must ask how

efficient is the increase in fit in going from the null model with many

degrees of freedom to another model with just a few degrees of freedom in

terms of the degrees of freedom lost in estimating more parameters?

Khattab and Hocevar (1982) recommend the efficiency index

F - fk)/[FO(dO - dk (4.29)

which represents the per parameter (or degree of freedom) average increase

in fit, whereo are the degrees of freedom of the null model, dk

are the degrees of freedom of the model Mk whose fit to the data is to

be assessed, and F and F are defined as before.

However, the efficiency index in (4.29) is not useful for making

comparisons between models in general. one would like to consider how

well a model fits data in terms of the parsimony of the model. The

parsimony of a model is indicated by the ratio of the number of degrees of

freedom in the model to the number of degrees of freedom available in the

data as indicated by the degrees of freedom of the null model for that

data. When this ratio is unity then all information in the data available

for testing the null model is also available for testing the alternative

model in question. No information is wasted on estimating parameters.

For example, consider two models, M1 and M2 . Let M1 be a

model applied to 10 variables, while M2 is applied to 30 variables.

The number of degrees of freedom do I in the null model for the 10

variable case is (10 x 11)/2 - 10 = 45. The number of degrees of freedom

d2 for the null model of the case with 30 variables is (30 x 31)/2 -
30 = 435. Suppose the degrees of freedom of the 0 variable model

30is 35. Suppose the degrees of freedom d of the model m
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is 425. Both models differ from their respective null models by 10

degrces of freedan. Yet M2 would have a parsimony of 425/435 = .977

while the parsimony of M1 would be 25/35 = .71. If M1 and M2

both had the same value for the normed fit index, they would both have the

same efficiency index as well, but, because M2 is more parsimonious, its

use of the data is superior. Thus, we recommend multiplying the normed fit

index by the parsimony of the model to obtain the parsimonious fit index:

= (gEO - fit) E (4.30)

This index corrects for the high normed fit index values obtained by

models that waste data in estimating parameters to get good fits to the

data. Note that a just identified model with zero degrees of freedom

would obtain a zero parsimonious fit index value even when its normed fit

index value is unity.

We will now illustrate the use of the normed fit indices as well as

estimation, significance testing, and nested models in an example of a

structural model with latent variables.

Example. What follows is a series of analyses based on an

artificially generated sample variance-covariance matrix. This matrix was

designed to simulate data obtained from a sample of 800 observations on 13

manifest variables having the structural relationships of the model in

Figures 4.9 and 4.14. This sample variance-covariance matrix is shown in

Table 4.3.

our first task will be to evaluate the "measurement model" part of the

model in Figure 4.9 and Figure 4.14. In this phase of our analysis we will

attempt to answer questions such as the following: Have we selected

Insert Table 4.3 about here
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variables that behave as indicators of latent variables in the manner that

the manifest variables of the model in Figure 4.9 and Figure 4.14 do? In

other words, are manifest variables Y3' ... Y6 all related to a

single canmon latent variable or factor? Can we say the same thing about

variables y 7 , ".' YI0 or variables YlI' ""O Y14 ? Is

variable x2 uncorrelated with variables Y'1 1 ... Y1 4? These

questions can be answered by testing the model shown in Figure 4.13. To do

this we will now seek maximu-likelihood estimates of the parameters of

the model in Figure 4.13.6

Insert Footnote 6 about Here

The maximun likelihood estimates along with the estimated standard

errors of the free parameters of the model in Figure 4.13 are shown in the

structural diagram in Figure 4.17. The chi square test for goodness of fit

with 61 degrees of freedan yields a value of 57.4074. The probability of

getting a chi square statistic this large or larger with 61 degrees of

freedan is .6069. Hence the goodness-of-fit statistic is not significant

at the .05 level, and we can accept the model as consistent with the data.

Insert Figure 4.17 about Here

Having accepted a model in which the variables are divided into

homogeneous clusters in the expected manner, we now can focus on the

structure among the latent variables of that model. We will assume

that according to theory the latent variables of the model in Figure

I . . . " . . . . . . - : -:- . . . . .. . . " " - "
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4.17 have a structure like that of Figure 4.9 or Figure 4.14. In

specifying this model we will have to fix the values of the two structural

parameters relating the disturbance variables i and 6 to their
1 -2

corresponding latent endogenous variables -)i and )2 just so the metric

of these endogenous variables will be determined. In Figure 4.18 we show

the structural diagram of this model again, but this time with

maximu-liKelihood estimates and estimated standard errors of the values of

the structural parameters of this model. The chi square statistic for this

model has 64 degrees of freedom and a value of 57.6570. The probability of

getting a chi square with 64 degrees of freedom this large or larger is

.6988. Again the ch square statistic is not significant at the .05 level,

and so we continue to accept the model. The difference chi square for the

canparison of the models in Figures 4.13 and 4.14 is 57.6570 - 57.4074 =

.2496 with 64 - 61 = 3 degrees of freedom. This is not significant. Hence

the specification of the causal structure among the exogenous and latent

endogenous variables is consistent with the data.

Insert Figure 4.18 about Here

Because the chi square goodness-of-fit statistic is not significant,

we may now test hypotheses about various free parameters of the model

in Figure 4.18. one way we could do this at this point is to perform

confidence interval tests of whether the various free parameters of this

model are equal to zero or not. For example, we may wish to test the

hypothesis that the structural parameter relating the first latent-21reaigtefrtltn

endogenous variable to the second latent endogenous variable is equal to zero.
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The maximumr-likelihood estimate of '2l is equal to .729 and has a standard

error of .054. An approximate 95% confidence interval estimate of-a is
-21

thus (.729 - 2(.054) < M < .729 + 2(.054)] or (.611 < _a2 < .837].-21 -21
Since the interval does not include zero, we reject the hypothesis that

a is equal to zero (cf. J8reskog & S8rbom, 1979). In Figure 4.18
-21
the standard errors of each of the free structural parameters of the model

are indicated in parentheses next to the corresponding maximum likelihood

estimates of these parameters. A test of this form could be performed for

each free parameter in turn. However, the tests in such a sequence of

tests will not be independent and will have an unknown bias after the first

test.

Instead of performing at this point a series of confidence interval

tests of the free parameters, we may also proceed with the remainder of the

a priori sequence of tests described earlier. The remaining tests will

test hypotheses about select free parameters of the model in Figure 4.14

and 4.18 using difference-chi-square statistics. To begin with consider

the model in Figure 4.15. This is a model nested within the previous model

in Figure 4.14 in which the structural parameters pertaining to the

relationships between the two exogenous and the two latent endogenous

variables (i.e.,-' -12' -&21 ) have all been fixed to zero. All

other fixed parameters are the same. For the model in Figure 4.15, the chi

square goodness-of-fit statistic with 67 degrees of freedom is equal to

1120.5375, which is significant at the .05 level. The difference chi

square between this model (Figure 4.15) and the previous model (Figure 4.14

or 4.18) is 1061.8805 = 1120.5375 - 57.675, with 3 = 67 - 64 degrees of

freedam, which is significant at the .05 level. This means that fixing to

I:
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zero the 3 additional parameters pertaining to causal relationships among

the two exogenous and the two latent endogenous variables produces a

definite lack of fit of the model to the data. Hence there must be nonzero

relationships between these variables as specified by the causal

connections hypothesized between them.

Because the chi square statistic for goodness of fit of the model

in Figure 4.15 is significant, we cannot proceed with any further

statistical tests for the fit of further restricted models nested within

the previous models. They would all be rejected. We thus end up accepting

the structural equation model repeated in Figures 4.9, 4.14 and 4.18 as

adequately fitting the thirteen variables.

However, we may further wish to apply the normed-fit index to the

model in Figure 4.18. 7b obtain this value we first must obtain the value

of the chi square goodness-of-fit statistic for a "null" model that

proposes that the covariances between different variables of the set of 13

manifest variables are all zero. In other words, the hypothetical model

variance-covariance matrix Z0 is presumed to be a diagonal matrix with

zeros in its off-diagonal positions. This would correspond to the model

illustrated in the structural diagram in Figure 4.16. In this case the

value of the chi square goodness-of-fit statistic with 78 degrees of

freedm is computed to be 5029.1802, which is significant at the .05 level.

But the normed fit index for the model in Figure 4.18 is

(5029.1802 - 57.675)/5029.1802 = .9885

with an associated reduction in degrees of freedom in going from the null

model to the structural equation model of

(78 - 64) = 14.
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The efficiency index for the model in Figure 4.18 is .9885/14 = .0706.

The parsimonious fit index is (64/78) x .9885 = .811. These results mean

we have gained considerable improvenent in fit at the expense of very

little loss in degrees of freedam in going from the null model to the

structural equation model to account for the relationships among the 13

manifest variables. This provides considerable support for the model in

Figures 4.9, 4.14, and 4.18.

Applications.

A number of latent variable models are available in addition to the

recursive model we used to illustrate latent variable designs. References

to a large number of studies are furnished in the Annual Review chapter

on "Miltivariate Analysis with Latent Variables: Causal Modeling," by

Bentler (1980). One can also find overviews of a number of important

designs in J8reskog (1978) and more complete illustrations in J?reskog

and S8rbom (1979). Of special interest are models that can be used to

test assumptions associated with selected conditions for confirmatory

analysis, using latent variable designs. For example, an overview of

latent variable models for testing reciprocal causation (Condition 4) was

presented recently by Maruyama and McGarvey (1980). [Unfortunately, these

authors made the unwarrented assumption that disturbances for reciprocally

related, latent endogenous variables wre unrelated.] Tests for moderators,

which help to specify boundaries for theory (Condition 6), have been

addressed by Worts, Rock, Linn, and J8reskog (1976), Werts, Rock, and

Grandy (1979, and Werts, Rock, and Linn (1979). The question of stability

of structural models (Condition 7) has been investigated in growth and
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longitudinal studies (J8reskog, 1979; S8rbcm, 1979; Werts, J8reskog,

& Linn, 1972). Finally, questions concerning the operationalization of

variables and constructs (Condition 8), such as method variance and other

forms of nonrandom measurement error, have received considerable attention

in the latent variable literature (cf. Alwin & Jackson, 1980; Kalleberg &

Kleugel, 1975; Mulaik, 1975; Mellenbergh, Kelderman, Stijlen & Zondag,

1979; Werts, J8reskog & Linn, 1976; Werts, Breland, Grandy, & Rock, 1980).

The Conditions for Causal Modeling with Latent Variable Models

By now it should be clear that to do confirmatory analysis with latent

variable structural models one still has to satisfy the ten conditions for

confirmatory analysis described earlier (Section 2) for models with

manifest variables. So far, our discussion of latent variable models has

focused on methodological procedures for determining whether structural

parameters associated with hypothesized causal connections between

variables are indeed not equal to zero (Condition 9) and whether the

specifications of fixed parameters in the identification of the model are

consistent with the data (Condition 10). We also furnished references

regarding models and tests for causal direction (Condition 4), moderators

(Condition 6), stability and stationarity (Condition 7), and construct

validity (Condition 8). This might suggest that researchers using latent

variable models have addressed conditions for confirmatory analysis in a

meaningful and thorough manner. However, such has not always been the

case. It is our impression that many of the conditions have been violated,

often seriously, in published confirmatory analysis using latent variables.

We shall review below our more serious concerns.
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Violations of Conditions 1, 2, and 5. We have observed numerous

studies with violations of the self-containment condition (Condition 5),

where obvious relevant causal variables have been omitted from latent

variable structural models. These omissions of relevant causes have seened

not to be due to a dearth of knowledge or theory available to

investigators in the field, but due to a superficial regard for theory and

available knowledge (violations of Conditions 1 and 2) accompanying the

rush to implement a new methodology. In fact, violations of Conditions 1

and 2 may be the root of most misuses of confirmatory methods with latent

variables, and for us this is evidenced by the many studies in the

literature in which little or no effort has been made to provide

theoretical justification for the model to be analyzed. It is time that

theoretical concerns receive at least equal emphasis as methodological

concerns in latent variable analysis.

Misinterpretations of disturbance variables (disturbance terms).

Another common mistake is to short-circuit the distinction between

disturbance variables and residual variables. Disturbance variables are

not "residual variables", that is, variables representing variation in the

endogenous variables after effects due to preceding causal variables in

functional equations have been partialled o-t in the estimation process.

In this case residual variables are always uncorrelated with causal

variables in structural equations because of the mathematics of

partialling. As with manifest variable models, the correct way to view

disturbance variables is to regard them as causal effects on the endogenous

variables due to such things as omitted relevant causal variables, random

shocks, and misspecifications of equations (e.g. nonlinearity).
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The extraneous causal influences acting on an endogenous variable may

or may not be correlated with the causal variables included explicitly in

the functional equation for an endogenous variable. If in a functional

equation the disturbance variable is correlated with the causal variables

(for example, the disturbance includes relevant causes) , then the

functional equation and the system of functional equations will not be

self-contained (i.e. a violation of Condition 5), and it will be

impossible to determine in a consistent way the effects of the causal

variables on the endogenous variables. Thus, we must have good reasons to

assume that the disturbance variables are uncorrelated with the causal

variables in functional equations. In other words, we must know of no

plausible unmeasured extraneous variable that acts upon an endogenous

variable and at the same time correlates with the causal variables of the

endogenous variable. If this is the case, then in the estimation process

residual variables can be tentatively identified with disturbance

variables.

In a related vein, another frequent mistake with latent variable

models is to presume without prior justification that the disturbance

variables contain only error of measurement. Often the variances of the

disturbance terms are interpreted as "error variances" and used to estimate

the reliability of certain manifest variables. (In general these should be

biased estimates at best). But as we have already indicated, the

disturbances may contain true variance that is associated with omitted

causal variables not included in the study. Another misinterpretation is

to assume that the disturbance variables are like unique factors in common

factor analysis, which are always mutually uncorrelated. But it is quite



196

possible to have correlated disturbance variables because omitted, relevant

causal variables represented in different disturbances can be correlated.

Most estimation algorithms allow one to estimate these correlations, but

such estimation is meaningful only in certain types of designs, such as

nonrecursive and time-series models.

In summary, disturbance variables are often misunderstood and

misinterpreted in latent variable models. To a great extent this

appears to be again attributable to the lack of attention to Conditions

1, 2, and5.

Exploratory rather than confirmatory analysis. A serious

misuse of the methodology of confirmatory analysis with latent variables is

to "play" with fixing and freeing the elements of the parameter matrices.

That is, a researcher mdy -;uixuct numerous analyses with different

fixed and free parameters until a model is fond that best fits the data.

It is also not unknown for some researchers to change assumptions

regarding causal direction for the same purpose. his is nothing but

exploratory analysis and does not represent a confirmatory analysis.

Stated simply a confirmatory analysis tests only a priori models

which have a strong theoretical base. This does not preclude, however,

testing several a priori models on the same sample. a

Failure to overidentify parameters. Another serious shortcoming of
4

many confirmatory analyses using both manifest and latent var les is to

fail to overidentify the structural parameters of the measurement portion

of a model concerning the connection between latent variabIs and their

manifest indicators. As mentioned earlier in this section,

overidentification is essential if one is to specify a model in ways in

*.
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which it can be potentially falsified. As it most often happens, failure

to overidentify parameters occurs when a researcher selects only three

manifest indicators to represent a latent variable. While it is true that

the structural coefficients relating three manifest indicators to a latent

variable are identified, in most cases they are not overidentified in

models containing these indicators. As a result it is not possible to test

whether or not the three indicators have a single latent variable in

common, since one can always fit a single latent variable perfectly to

three manifest variables. Thus, a crucial test of the "measurement model"

part of a structural model with latent variables may not be possible.

Therefore, we recamend that each latent variable in a model be represented

by at least four manifest indicator variables. In this case the structural

parameters of the "measurement" submodels relating each set of manifest

indicators to their respective latent variables will be overidentified, and

it will be possible to test the measurement aspects of the model.

These are our most serious concerns with respect to the use of latent

variables in confirmatory analysis. They are by no means exhaustive of all

the concerns in this area. In fact, many of the issues we raised in regard

to manifest variable models, such as the need for equilibrium-type

conditions and specification of causal intervals in time-series analysis,

apply equally to latent variable models. We will not attempt to docunent

all of these issues again for latent variable models. Rather, we suggest

that the users of the latent variable approach have been at least as

cavalier as users of the manifest variable approach in regard to

theoretical justifications for using confirmatory analysis. We recommend

strongly that theoretical issues be given greater attention in latent
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variable designs.

Causal Inference with Latent Variables

There are dangers and difficulties for causal inference in using the

latent variable concept, because it implies explanation in terms of unseen,

not directly measureable processes and/or entities. The danger is that

when a model with latent variables appears consistent with data, one may

fail to entertain the possibility of alternative models for the same

data. Latent variables can never be regarded as representing unique

explanations of any phenomenon. This is especially to be renembered in

latent variable models because the number of latent variables, including

latent disturbances, will always exceed the number of manifest variables.

As a consequence, the latent variables can never be uniquely determined

from the manifest variables; what is manifest and seen cannot uniquely

define what is latent and unseen. This result is now well known for the

latent variable model of exploratory common factor analysis (cf. Mulaik

& McDonald, 1978; McDonald & Mulaik, 1979 for reviews of this problem

in factor analysis). But the result also generalizes from common factor

models to structural equation models with latent variables.

There are two important aspects to the problem of indeterminacy for

latent variables: (1) scores on latent variables are not uniquely defined.

(2) the identity of latent variables is not uniquely determined from the

manifest variables dependent on them.

When a structural equation model with latent variables fits a set of

data, one may naturally went to have a way to obtain measurements on the

latent variables. Borrowing the factor score concept from factor analysis,
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some have tried to obtain these measurements by regressing the latent

variables onto the manifest variables, using information about the

covariances among the manifest variables, and between the manifest

variables and the latent variables, as the basis for the regression

estimates. However, the regression estimates of the latent variables are

not equivalent to the latent variables, differing from them by an

indeterminate amount whose variance is equal to the error of estimate in

estimating the latent variable from the manifest variables. It is the

unpredictable part of the latent variable that is indeterminate. There is

no unique solution for this part. Hence, one can construct more than one

solution for the latent variable by combining the predictable part-

obtained from the regression of the latent variable onto the manifest

variables--with a variable independent of the predictable part, chosen

arbitrarily to stand for the unpredictable part. When the squared multiple

correlation for predicting a latent variable is less than .70, then quite

possibly two alternative constructed solutions for the same latent variable

can be correlated not just zero but negatively with one another. The use

of constructed or estimated "factor scores" to stand for a latent variable

in question is not recommended when the multiple correlation for predicting

a latent variable is less than .80. When the multiple correlation is less

than .80, such scores may show moderate to strong correlations with other

variables while possibly the real latent variable in question has only zero

to moderate correlations with these same other variables.

More problematic is the indeterminacy in the identity of latent

variables in structural equation models. 7b be sure, a researcher performs

a confirmatory analysis with an interpretation already given to the latent
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variables of the analysis. If the model is disconfirmed because the latent

variables do not relate to their respective manifest indicators as expected

by hypothesis, then one may question either the choice of indicators, or

more seriously, the interpretations attached to the latent variables of the

model that led one to believe that the manifest variables would be linked

together through the latent variables.

But what can one conclude if the model is corroborated by showing

acceptable fit to the manifest variables? Is the model corroborated

because the manifest variables have as causes the latent variables presumed

at the outset to be causes of them? Or is the model corroborated because

the manifest variables have some other variables as causes? In particular,

could there be other variables having the same pattern of relationships

with the manifest variables as one's hypothetical latent variables, but

distinct from them? The mathematics of indeterminacy for latent variables

allows for this. But there is no way to resolve such questions other than

to try to make explicit all possible alternative interpretations for the

results and then perform further studies to differentiate between the

interpretations. But the indeterminacy of latent variables is not a fatal

flaw of latent variable models. It is a reflection of the indeterminacy in

all inductive attempts to use empirical observations to confirm theories by

examining whether consequences deduced from the theories do indeed occur as

expected. This point we emphasized earlier in Section 3.

We recognize that there are those who are uncomfortable with unseen

causes, latent variables, and hypothetical constructs. In fact, inspired

by the 19th century writings of the empiricist philosophers Mach and

Pearson, the followers of the positivist movement in the philosophy of

.. .. . . ... . . - '.. . . . . . . .. . -b. . . .. . ..' ' il ll l~ n i .. . l .. . . .. . rai .. ... . . l. . ... . . . . . . . . -
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science sought between 1920 and 1950 to exclude from science all reference

to unseen causes, believing that incorrigible knowledge could only be

derived from sensory experience and hence from those things that were

observed. Since the 1950's the philosophy of science has taken a more

pragmatic and less dogmatic and absolutistic position with respect to

knowledge. The result is that the use of "unseen causes" is accepted now

with greater tolerance, as long as the unseen causes allow one to unify

broader danains of experience than before and are interpreted in terms of

categories that in principle may eventually be observable or predict novel,

observable results. It is interesting to note that Mach rejected totally

atomic theory in physics because atoms were "too hypothetical", while

Pearson opposed the Mendelian theory of genes for nearly 20 years after

Mendel's work was discovered in 1900, partly because genes were not

observable. In a way these scientists' rejection of what were at the time

hypothetical constructs led them to reject what were to become the next

major developments in their respective fields. Thus to "see" things

differently, and this includes in some cases "seeing" in things what is not

directly visible in them, may be essential first steps to achieving better

understanding of the relationships between things in our world.

L
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'Theories of stress often differentiate between (a) qualitative

overload, which refers to demands that exceed physical and/ok personnel

resources, and (b) quantitative overload, which refers to demands that exceed

available time limits but not physical/personnel resources (cf. Katz &

Kahn, 1978). Both sources of overload are addressed in the illustration.

2The conditional function has the form of the linear regression

function (Lord & Novick, 1964 Other functions, such as maximum likelihood

- -- _ _
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functions, may be employed to represent functional relations (cf. Jereskog &

Sorbom, 1979).

3Methodology has also been developed for nominal and ordinal scales of

measurement (cf. Carter, 1971; Boyle, 1970; Heise, 1972; Lyons, 1977; Spaeth,

1975).

4The latter assumption satisfies the "rank condition" required for

identification, which is beyond the mathematical scope of this treatment. It

implies that estimates of structural parameters will not be subject to at

least severe bias resulting from multicollinearity (cf. Billings & Wroten,

1978; Johnston, 1972).

5 Points 1 through 3 are analogous to conventional contrasts between

standardized and unstandardized regression weights, which are not elaborated

here. Decomposition of correlations is treated in Condition 10.

6In actuality the sample variance-covariance matrix in Table 4.3 was

created in the following way: First 800 observations on the 15 mutual

uncorrelated independent variables of thd model in Figures 4.9 and 4.14 were

generated using a computer random number generator that produces numbers that

are approximately normally distributed with means of zero and standard

deviations of unity. The sample variance-covariance matrix for these 15

aritifically generated variables was then calculated and used as a sample

estimate f of the matrix of covariances among the independent variables of the

model in Figure 4.14. Then after fixing the zero and other fixed elements of

the matricesA,p, and/ to specify the model in Figure 4.14, arbitrary values

were then chosen for the remaining "free" parameters of these matrices and the
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resulting sample variance-covariance matrix was derived using equations 4.9a -

4.9c. Thus the matrix in Table 4.3. simulates a sample variance-covariance

matrix taken from a population distributed according to the multivariate

normal distribution consistent with the model in Figure 4.14.

7The estimates of the free parameters of the models discussed in this

section were obtained using the program LISREL IV (Jbreskog & S6rbom, 1978).
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Values on X: 1,1,2,2,3,3,4,4,5,5,6,6

Values on Y: 1,1,2,2,1,1,3,3,1,1,3,3

Frequency Y

4 3-
2 2

6 I • •

1 2 34 5 6 X

Frequency 2 2 2 2 2 2

Figure 1.1. The Functional Relation of Variable Y

on Variable X in an Asymmetric, Self-

Contained System.
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Presence
of Xl
Riot I d
Equipment

Y1 Police
Violence

Verbal
Obscenities
by 2
Protestors

BY2Y1  B YlY 2

Normative
Control 3

Protestor
Violence

Number
of 

2Arbitrary 4 d
Arrests

Figure 2.2. Nonrecursive structural model relating police
violence and protestor violence. (From "An
Introduction to the Logic, Assumptions, and Basic
Analytic Procedures of Two-Stage Least Squares" by
L.R. James and B.K. Singh, Psychological Bulletin,
1978, 85, 1104-1122. Copyright 1978 by the American
PsychoT-gical Association. Reprinted by permission.)
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(Expected Quality of
Role Performance)

X1

, t-fY1 (Role- dy I =RS)
Overload) (

(Expected Quantity of
Role Performance)

(a) Self-Contained

X1

Y1  dYl (RS+a Empersonality)

(b) Nonself- Contained

Figure 2.4. Illustrations of self-contained and nonself-contained

structural models.
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t

ORGANIZATIONAL DYSFUNCTION AL
CONTROL BEHAVIORS

EMPLOYEE

DISSATISFACTION

Figure 2.5a. Social system: Nonbounded time interval

ORGANIZATIONAL EMPLOYEE DYSFUNCTIONAL EQUILBRIUM-TYPE

CONTROL DISSATISFACTION BEHAVIORS CONDITION

#Time:• to  - 1t, t 2  - t3

Figure 2.5b. Causal order assuming rapid equilibration times
and an equilibrium-type condition

Figure 2.5. Causal order and the equilibrium-type condition.
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Figure 2.6

Conditions Pertaining to Appropriateness of Theoretical

Models for Confirmatory Analysis

Condition 1: Formal statement of theory in terms of a structural model.

Development of a structural model that specifies variables,
causal connections among variables, and functional relations
and equations that relate each effect to all of its
relevant causes.

Condition 2: Theoretical rationale for causal hypotheses.

Use of theory to propose how causes produce effects by
introduction of mediating mechanisms to help to explain
nonobvious covariation among variables and molar causal
connections among complex variables.

Condition 3: Specification of causal order.

Hypothesized order in which variables occur naturally
in a system of ordered functional equations, given an
equilibrium-type condition for cross-sectional designs
and specified causal intervals, stationarity, and an
equilibrium-type condition for time series designs.

Condition 4: Specification of causal direction.

Hypothesized direction of causation for each causal
connnection in a structural model. The direction may
be asymmetric, denoting a recursive causal relation, or
reciprocal, denoting a nonrecursive causal relation.

Condition 5: Self-contained functional equations.

The functional equation for each effect (endogenous
variable) in a structural model contains all the relevant
causes of that effect, which is indicated by lack of
covariation between the explicitly measured causes in
an equation and the disturbance term of that equation.

Condition 6: Specification of boundaries.

Given linearity in parameters and variables, the
functional equations are additive within the populations
(e.g., subjects and environments) to which inferences are
to be made.

Condition 7: Stability of structural model.

The values of structural parameters are invariant
(stationary) over specified time intervals, and the values
on variables representing events are in an equilibrium-
type condition.
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d2

X2

B41

31 3

Functional Equations

x 2 = B2 1 x1 +d 2  (2. 7a)

X3 B 3 1 x1 + B3 2 X 2 + d3  (2.7b)

x4 = B4 1 x1 + B 2x2+ B4 1+ d 4  (2.7c)

Figure 2.7. Structural model and functional equations for a
fully recursive design.
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X2

(100.0)

X 1) (3.1:) X 4 z 4

(4.0 (36.0)

x 3=B 1 X B 2 +3 )2Sb

2.8b OLS regression equations

x2equation: B 2 1 = 2.00

x 3 equation: B 3 1 = .75, B 3 2 = .25

x 4 equation: B41 = .60, B 4 2 = .18, B 4 3 = 48

2.8c Estimates of unstandardized regression weights

Figure 2.8 An empirical example of structural equation analysis for
a recursive model.
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U 2

Z 2

Z3 U3

Path Equations

Z2 P2 1zl + u 2  (2.9a)

=3 3 1 Z 1 + P 3 2 z 2 +u3 (2.9b)

=4 P4 1l1 + P42 z2 + P43Z 3 +U' 4  (2.9c)

Figure 2.9. A fully recursive path model and
corresponding path equations.
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PU 2  
Aea+ 

RS

zi 21 Z z1  p2 1  z 2

32 p3 2

0 p 2  

7

U 3  a+ RS

(A) Self -Contained Path Model (B) Path Model with an
Unmeasured Variable

Figure 2.10. Illustrations of a self-contained path model and
a path model with an unmeasured variable



Equations for Figure 2.10a - Self-Contained Path Model

z2  P21Zl + (d2=RS)

Path Equations 2 2

'3 = P31Zl + P32z2 + (d3 =RS)

E(z2z1 ) = P21 E(zlzl) + E(RSzI )

Expectations E(z3z1 ) = P31 E(Zlzl) + P3 2E(z2zl) + E(RSzl )

E(z3 z2 ) = P3 1E(zlz 2 ) + P32 E(z2 z2 ) + E(RSz 2)

Note: E(RSzI) = E(RSz1 ) = E(RSz 2 ) 
= 0

r2= P21  (2.11a)

Normal Equations r3 2  P3 1 + P32 r21  (2.11b)

r32 P31r21 + P32  (2.11c)

Equations for Figure 2.10b - Path Model with an Unmeasured Variable

z2 = P2 1zl + (RS + a)

Path Equations = + + (RS + a)

E(z2 z1 ) = P21E(zlZl) + E(RS + a)zI

...........

Expectations E(z3 z1 ) = P31E(zlzl) + P3 2E(z2 zI ) + E(RS + a)zI

E(z 3 z2) = P3 1E(Zlz2 ) + P3 2 E(z 2 z2 ) + E(RS + a)z 2

r21 = P21 + aalf E(RS+a)zl =aal (2.11d)

Normal Equations
r31 = P3 1 + P32 r2 1 + Oal (2.11e)

r = P31 r2 1 + P3 2 + a2 (2.11f)

Figure 2.11. Path equations, expectations, and normal equations for
Figures 2.10a and 2.10b.
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False Model True Model

Assumes u2 = RS when in fact Assumes a is measured, and

u2 = S + athus u 2 is equal to RS

Path Equations

2 p21zl +2 2  = P21zl + P2a + u2

Expectations

E(z z) = 2 E(zlzl) + Euz) E(z z )=p*'E zz)+~ E(az,)+Euz)

E(z a)= E(z a)+ E(aa)+E ua)

Normal Equations

r P21  r2  = p 1 + P/ ra

Note- False assumption that r 2a / 1r +
2a 2 l + 2a

E(u2zl) =E(RS + a)z

=aal =0

Bias in Using r2, as Solution forP2

rl= P21  (false model)

= p/+ P.0a ra (true model),

thus, p 1 (false model) differs from p 1 (true model)

by a factor of:

p / r(2.12a)

p2a al

Figure 2.12. Biased solution of path coefficient
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i (.7) *2 U RS)

°2(=RS)
(.0)o z2

Path Equation: z2 = P2 1Zl + P2a + u2 (=RS)
/ /

Solutions for Path Coefficients: P 2 1 = 50, p = .40

2.13a. Solutions for path coefficients in a self-contained path equation
(true model). Asterisks indicate correlations.

z1 (.70), Z 2  u2 (=RS+a)

Path Equation: z2 = P2 1 Zl + u2 (=RS+a)

Solution for Path Coefficient: P21 =r 2 1 
= .70

2.13b. Solution for path coefficient in nonself-contained path equation(false model).

+ /rP2 1 = P2 1 + P al

.70 = .50 + (.40)(.50)

= .50 + .20

Bias in P21 = P2aral = .20

2.13c. Bias in estimate of P2 1 (false model).

Figure 2.13. Empirical illustration of bias resulting from an unmeasured
relevant cause and a nonself-contained path model.
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pj . Attempt to identify known major and moderate causes of the endogenous
i le.

A. If data have not been collected, then attempt to measure the major/
moderate causes unless there appears to be a good reason not to
include one or more of these variables, as determined in Step II.

B. If data have already been collected, then attempt to identify
known major/moderate unmeasured causes. If one or more such
causes is believed to exist, proceed to Step II. If no major/moderate
unmeasured causes are believed to exist, then exit from the decision
steps at this point [i.e., a serious unmeasured variables problem
appears to be unlikely for this endogenous variable, at least from
the perspective of the decision-maker(s)].

Step 1. Postulate whether each (major/moderate) unmeasured cause is correlated
w one or more of the measured causes, using prior empirical evidence whenever
possible to support the postulates. In designing a path analysis study, this
step and those to follow are meant to be viewed in terms of causes that are not
as yet in the causal model, as compared to causes already included in the model.

A. -If the correlations between an unmeasured cause and all of the measured
causes are presumed to be low (e.g., 0 to ± .20, although this is
arbitrary), then exit here for that unmeasured cause. Note, however,
that if a different unmeasured cause is included later in the causal
model, then the decisions regarding prior unmeasured causes should be
reevaluated (this applies to all of the following steps). Furthermore,
an exit at-this point suggests that the explanatory power of the
causal model in regard to the endogenous variable of interest will
be reduced. On the other hand, if the judgment is correct that all
correlations between the unmeasur-ed cause and the measured causes
are low, then the solutions of the path coefficients for the measured
causes are not likely to be seriously biased.

B. If an unmeasured cause is believed to have a moderate to high
correlation with one or more of the measured causes, then consider
whether the unmeasured cause is essentially linearly dependent on
some combination of the measured causes. If prior research and/or
judgment allow one to have confidence in an affirmative response to
one of these considerations, then exit at this point. Note again,
however, that while the exit suggests lack of serious bias, this will
occur only if the judgments are correct.

Step III. By reaching Step III, it has been decided that (a) at least one
unmeasured major/moderate cause exists for the endogenous variable of interest,
(b) the unmeasured cause is correlated at least moderately with one or more of the
measured causes, and (c) the unmeasured cause is not linearly dependent on some
combination of the measured causes. This suggests that a serious unmeasured variables
problem exists and that an attempt to solve for the path coefficients for this
endogenous variable based on the measured causes is likely to result in at least
one seriously biased solution. Consequently, it is recommended that path analytic
procedures not5beemployed for this endogenous variable until the unmeasured
cause(s) is in fact measured. A less desirable possibility might be to delete
measured causes that are presumed to be correlated with unmeasured causes.

Figure 2.14. Decision steps for assessing the seriousness of unmeasured variables problem.
(From "The Unmeasured Variables Problem in Path Analysis" by Lawrence R. James,
Journal of Applied Psychology, 1980, 65, 415,421. Copyright 1980 by the
American Psychological Assoc iation. I-printed by permission.)
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z , ( S im i la r it y o f P 2 1 z 2  A 2 P 3 2 z 3 ( e

nterests) 302(trcin 03(redhp

Path Equations

z2= P 2 1 z1 + u2  (2. 15a)

z3 - P3 2 z 2 + (2.15b)

2 .15a. z I is an indirect cause of z 3

Z1  Similarity of P21 - Z2 Attraction
Interests 2Atato

.0 u2

Z 3 Friendship

u3

Path Equations

z2= P2 1 Zl + u2  (2.15c)

Z3 = P3 1 Z1 + P3 2 z2 + u3  (2.15d)

2.15b. zI is a relevant cause of z3

Figure 2.15. Contrasting path models with zI treated as an

indirect cause and a relevant cause
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1U

z 2

Z33

Path Equations

z2 =P 2 1zl + u (2.16 a)

z 3 + 3z 3z u3  (2.16b)

z 4z + P4 + +4z u 4  (2.16--)

Figure 2.16. A just identified path model
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>U2

Z2

Z3

U 3

Figure 2.17a. Path model with P41 predicted to be equal to zero.

* P31zl + P32z2 + U 3  (2. 17b)

*4= (P41=-O)zl + P42z2 + P43'3 + U4  P42z2 +P 43z3 +' 4  (2.17c)

Figure 2.17b. Path equations.

21 P21

*31 =p 3 2p2 1 + P31

* 32 P3 2 + P12

* 41 4P22 + P43P31 + P42P21 +IR

* 4 43P32 + 4P12 + P42 +,9.~tP

r4* 43+ P42P'32 + P42P3lP2l + SAt1'2 P

Figure 2.17c. Decomposition equations; asterisks denote correlations
subject to overidentifying restriction.
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U2

z 2

U 4

z 4
Zl

z3
313

Figure 2.18. An overidentified recursive path model with

P32 and P4 1 predicted to be equal to zero
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*FALSE MODEL zP1 a 2P2Z/ U

21 32 3

Path Equations

Z3=(P3 1=O)zl + P2 + u3

Predictions

p21 and P3 2 are significant

P31 is not significant

TRUE MODEL
(a

Path Equations

Z2 P21 + u2

*3 = CP31=O)zl + P32z2 + P3aza + u 3

Predictions

P21, P3 2 , and P3a are significant

p1 is not significant

Figure 3.1. Confirmation of a false model.
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Table 4.2. Symbols used and their meanings in notation for structural
equation models.

Sybol Meaning

FLatent exogenous variable

n Latent endogenous variable

E Latent disturbance variable.

x Manifest exogenous variable.

y Manifest endogenous variable.

aStructural parameter relating one endogenous
variable to another.

Structural parameter relating an exogenous
variable to an endogenous variable.

6 Structural parameter relating a disturbance
variable to an endogenous variable.

Random vector of latent exogenous variables.

x Random vector of manifest exogenous variables.

ERandom vector of disturbance variables.

r Random vector of latent endogenous variables.

y Random vector of manifest endogenous variables.

* Random vector of independent variables.
E= ', x' , ']

* Random vector of dependent variables.

9 *' = [ 1', y'].
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Table 4.2 (Continued) . Symbols used and their meaning in
notation for structural equation models.

Symbol Meaning

A Alpha matrix of structural coefficients for

endogenous variables.

B Beta matrix, B = I - A.

r Ganna matrix of structural coefficients relating
exogenous to endogenous variables.

A Delta matrix of structural coefficients relating

disturbance variables to endogenous variables.

Gamma star matrix, F*' = [T:A].

Phi matrix of covariances among independent variables.

G Selection matrix to select manifest dependent
-y variables from n*.

Gx  Selection matrix to select manifest independentvariables from E*.

Population covariance matrix for manifest variables.

i-0 Hypothetical population covariance matrix for
manifest variables according to a structural model.

S Sample covariance matrix for manifest variables.

Estimated hypothetical covariance matrix for manifestvariables according to a structural model.
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Table 4.3. Sample covariances among 13 manifest variables

of the model in Figure 4.14for a sample of 300 observations.

y3 y4 y5 y6 y7 y8 y9 ylO y1l y12 y13 y14 x2

y3 .99

y4 .56 1.10

y5 .60 .63 1.07

y6 .66 .69 .74 1.14

y7 .43 .49 .50 .51 1.08

y8 .37 .42 .42 .46 .64 .94

y9 .47 .52 .55 .57 .78 .69 1.22

yl0 .35 .40 .41 .45 .61 .53 .65 .93

yll .29 .38 .39 .44 .25 .26 .29 .22 .97

y12 .25 .30 .31 .38 .22 .20 .26 .19 .51 1.00

y13 .24 .34 .32 .36 .18 .21 .26 .21 .49 .44 .94

y14 .25 .36 .34 .39 .24 .23 .28 .20 .54 .44 .48 .91

x2 .43 .47 .50 .51 .35 .33 .40 .29 .03 -.01 -.04 -.00 .96

9i



243

Expected Quality -........
Role 

Overload

Expected Quantity I
State Anxiety

Fig. 4. la. Latet structural mdel

Reduction-Waste Extended Hours

E ..- Reduction-Faulty Units / -.- w insufficient Personnel pExpected Role

SQuality Overload

e . Increased Inspections Insufficient Time e
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Fig. 4.lb. Measurement model linking latent variables to manifest indicators

Figure 4.1. Illustrations of a structural model and a measurement model for a latent
variable analysis.
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(3) Role Overload P43 (4) State Anxiety

Expected P32

Quantity (2)

Fig. 4.3a. Latent structural model with path coefficients linking
latent variables.

Increased Dependability 1 i
T 81(.65) Insufficient Time Headaches

Expected Quality (2) .60 .87(.75)1 .84(.704'

>5 (3) Role Overload . (4) State Anxiety
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Production Quotas

Fig. 4.3b. Latent variable model with one manifest indicator for
each latent variable.

Increased
Dependability (1) 243= .42

(3) Insufficient (4) Headaches
Time

Product ion
Quotas (2)

Fig. 4.3c. Manifest variable model with biased estimates of path
coefficients

Figure 4.3. Illustration of bias in estimates of path coefficients resulting
from measurement error in manifest variables.
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Figure 4.4. -Structural model with six latent

variables. Eand &~ are exogenous variables.
$-

21 and 11 2 are endogenous variables; E 1 and2

are disturbance variables.
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Figure 4.8. A structural model in which four

manifest exogenous variables 1 , ... x4

are causes of a latent variable 91 which in turn

is a com on cause of manifest endogenous variables

2' ....X5"
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66

Figure 4.10. A submodel of the model in Figure 9.

used to illustrate the assessment of the identification

of parameters. In this model --3' ,, ' --j ' and !6

are overidentified parameters.
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Figure 4.11. Because arrows "radiate" from the common

variable _ni and the latent variables have unit variances,

the covariance between the manifest variables y7 and y3

is given by the product 27 1 2A2 1 43 2 .
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